On the solution of a plate with ribs
A mathematical model of the equilibrium problem of elastic sandwich plates is established. Using the theory of inequalities of Korn's type for a general class of elliptic systems the existence and uniqueness of a variational solution is proved.
In the present paper the convergence of the finite element method to the solution of the problem of a plate with ribs which are stiff against torsion in the sense of Vlasov is studied. According to the conclusions of a paper by the author and J. Haslinger it suffices to prove a density theorem (Theorem 2.1).
We deal with an optimal control problem for variational inequalities, where the monotone operators as well as the convex sets of possible states depend on the control parameter. The existence theorem for the optimal control will be applied to the optimal design problems for an elasto-plastic beam and an elastic plate, where a variable thickness appears as a control variable.
The aim of the present paper is to study problems of optimal design in mechanics, whose variational form is given by inequalities expressing the principle of virtual power in its inequality form. The elliptic, linear symmetric operators as well as convex sets of possible states depend on the control parameter. The existence theorem for the optimal control is applied to design problems for an elastic laminated plate whose variable thickness appears as a control variable.
We consider the problem of controlling pointwise (by means of a time dependent Dirac measure supported by a given point) the motion of a vibrating plate Ω. Under general boundary conditions, including the special cases of simply supported or clamped plates, but of course excluding the cases where multiple eigenvalues exist for the biharmonic operator, we show the controlability of finite linear combinations of the eigenfunctions at any point of Ω where no eigenfunction vanishes at any time greater...
The method of reliable solutions alias the worst scenario method is applied to the problem of von Kármán equations with uncertain initial deflection. Assuming two-mode initial and total deflections and using Galerkin approximations, the analysis leads to a system of two nonlinear algebraic equations with one or two uncertain parameters-amplitudes of initial deflections. Numerical examples involve (i) minimization of lower buckling loads and (ii) maximization of the maximal mean reduced stress.
Hard clamped and hard simply supported elastic plate is considered. The mixed finite element analysis combined with some interpolation, proposed by Brezzi, Fortin and Stenberg, is extended to the case of variable thickness and anisotropic material.