Rayleigh wave scattering at the foot of a mountain.
The displacement field caused by the classic earthquake mechanism model consisting of a slip along the fault is extended to the case when besides the slip, also an opening occurs caused by tensional forces. The tensor matrix describing the moment tensor does not necessarily have a nil trace. The direct problem is solved finding the radiation pattern for and waves. A method to solve the inverse problem of the determination of the four parameters describing the source is presented and tested on...
A long-time dynamic for granular materials arising in the hypoplastic theory of Kolymbas type is investigated. It is assumed that the granular hardness allows exponential degradation, which leads to the densification of material states. The governing system for a rate-independent strain under stress control is described by implicit differential equations. Its analytical solution for arbitrary inhomogeneous coefficients is constructed in closed form. Under cyclic loading by periodic pressure, finite...
A homogeneous solid subject to quasi-static loading in the small strain range is considered. The material model assumed is rate-independent, non-associative and incrementally bilinear. The strain localization conditions are analytically solved using a geometric method. The expressions of the critical hardening moduli, their domains of validity and the form of the strain rate discontinuity are obtained. Finally these results, and in particular the role of hydrostatic and deviatoric non-normality,...
The elastic behaviour of the Earth, including its eigenoscillations, is usually described by the Cauchy-Navier equation. Using a standard approach in seismology we apply the Helmholtz decomposition theorem to transform the Fourier transformed Cauchy-Navier equation into two non-coupled Helmholtz equations and then derive sequences of fundamental solutions for this pair of equations using the Mie representation. Those solutions are denoted by the Hansen vectors Ln,j, Mn,j, and Nn,j in geophysics....