Page 1 Next

Displaying 1 – 20 of 63

Showing per page

A comparison of solvers for linear complementarity problems arising from large-scale masonry structures

Mark Ainsworth, L. Angela Mihai (2006)

Applications of Mathematics

We compare the numerical performance of several methods for solving the discrete contact problem arising from the finite element discretisation of elastic systems with numerous contact points. The problem is formulated as a variational inequality and discretised using piecewise quadratic finite elements on a triangulation of the domain. At the discrete level, the variational inequality is reformulated as a classical linear complementarity system. We compare several state-of-art algorithms that have...

A mechanochemical model of angiogenesis and vasculogenesis

Daphne Manoussaki (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Vasculogenesis and angiogenesis are two different mechanisms for blood vessel formation. Angiogenesis occurs when new vessels sprout from pre-existing vasculature in response to external chemical stimuli. Vasculogenesis occurs via the reorganization of randomly distributed cells into a blood vessel network. Experimental models of vasculogenesis have suggested that the cells exert traction forces onto the extracellular matrix and that these forces may play an important role in the network forming...

A mechanochemical model of angiogenesis and vasculogenesis

Daphne Manoussaki (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Vasculogenesis and angiogenesis are two different mechanisms for blood vessel formation. Angiogenesis occurs when new vessels sprout from pre-existing vasculature in response to external chemical stimuli. Vasculogenesis occurs via the reorganization of randomly distributed cells into a blood vessel network. Experimental models of vasculogenesis have suggested that the cells exert traction forces onto the extracellular matrix and that these forces may play an important role in the network forming...

A minimum principle in the dynamics of elastic materials with voids

Michele Ciarletta, Edoardo Scarpetta (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In the context of the linear, dynamic problem for elastic bodies with voids, a minimum principle in terms of mechanical energy is stated. Involving a suitable (Reiss type) function in the minimizing functional, the minimum character achieved in the Laplace-transform domain is preserved when going back to the original time domain. Initial-boundary conditions of quite general type are considered.

A quasi-Newton algorithm based on a reduced model for fluid-structure interaction problems in blood flows

Jean-Frédéric Gerbeau, Marina Vidrascu (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We propose a quasi-Newton algorithm for solving fluid-structure interaction problems. The basic idea of the method is to build an approximate tangent operator which is cost effective and which takes into account the so-called added mass effect. Various test cases show that the method allows a significant reduction of the computational effort compared to relaxed fixed point algorithms. We present 2D and 3D fluid-structure simulations performed either with a simple 1D structure model or with shells...

A Quasi-Newton Algorithm Based on a Reduced Model for Fluid-Structure Interaction Problems in Blood Flows

Jean-Frédéric Gerbeau, Marina Vidrascu (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose a quasi-Newton algorithm for solving fluid-structure interaction problems. The basic idea of the method is to build an approximate tangent operator which is cost effective and which takes into account the so-called added mass effect. Various test cases show that the method allows a significant reduction of the computational effort compared to relaxed fixed point algorithms. We present 2D and 3D fluid-structure simulations performed either with a simple 1D structure model or with...

A simple mechanical model to analyse the rocking and sliding response of rigid blocks to earthquakes

Giancarlo Bilotti, Leonardo Giliberti (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In order to study the effects of earthquakes on tombstones and monumental columns in recent years the dynamical analysis of rigid blocks subjected to ground accelerations has interested many researchers. Mainly, the rocking motion has been investigated and many numerical difficulties have been pointed out in such analysis [1-2-3-4]. Some computational advantages can be obtained by modelling the bonding between two blocks or between block and foundation by means of an elastic layer of Winkler's springs...

A three dimensional finite element method for biological active soft tissue Formulation in cylindrical polar coordinates

Christian Bourdarias, Stéphane Gerbi, Jacques Ohayon (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A hyperelastic constitutive law, for use in anatomically accurate finite element models of living structures, is suggested for the passive and the active mechanical properties of incompressible biological tissues. This law considers the passive and active states as a same hyperelastic continuum medium, and uses an activation function in order to describe the whole contraction phase. The variational and the FE formulations are also presented, and the FE code has been validated and applied to describe...

A three dimensional finite element method for biological active soft tissue formulation in cylindrical polar coordinates

Christian Bourdarias, Stéphane Gerbi, Jacques Ohayon (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A hyperelastic constitutive law, for use in anatomically accurate finite element models of living structures, is suggested for the passive and the active mechanical properties of incompressible biological tissues. This law considers the passive and active states as a same hyperelastic continuum medium, and uses an activation function in order to describe the whole contraction phase. The variational and the FE formulations are also presented, and the FE code has been validated and applied to describe...

A viscoelastic model with non-local damping application to the human lungs

Céline Grandmont, Bertrand Maury, Nicolas Meunier (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we elaborate a model to describe some aspects of the human lung considered as a continuous, deformable, medium. To that purpose, we study the asymptotic behavior of a spring-mass system with dissipation. The key feature of our approach is the nature of this dissipation phenomena, which is related here to the flow of a viscous fluid through a dyadic tree of pipes (the branches), each exit of which being connected to an air pocket (alvelola) delimited by two successive masses. The...

Caputo Derivatives in Viscoelasticity: A Non-Linear Finite-Deformation Theory for Tissue

Freed, Alan, Diethelm, Kai (2007)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 26A33, 74B20, 74D10, 74L15The popular elastic law of Fung that describes the non-linear stress- strain behavior of soft biological tissues is extended into a viscoelastic material model that incorporates fractional derivatives in the sense of Caputo. This one-dimensional material model is then transformed into a three-dimensional constitutive model that is suitable for general analysis. The model is derived in a configuration that differs from the current, or spatial,...

Cell-to-muscle homogenization. Application to a constitutive law for the myocardium

Denis Caillerie, Ayman Mourad, Annie Raoult (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We derive a constitutive law for the myocardium from the description of both the geometrical arrangement of cardiomyocytes and their individual mechanical behaviour. We model a set of cardiomyocytes by a quasiperiodic discrete lattice of elastic bars interacting by means of moments. We work in a large displacement framework and we use a discrete homogenization technique. The macroscopic constitutive law is obtained through the resolution of a nonlinear self-equilibrum system of the discrete lattice...

Cell-to-Muscle homogenization. Application to a constitutive law for the myocardium

Denis Caillerie, Ayman Mourad, Annie Raoult (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We derive a constitutive law for the myocardium from the description of both the geometrical arrangement of cardiomyocytes and their individual mechanical behaviour. We model a set of cardiomyocytes by a quasiperiodic discrete lattice of elastic bars interacting by means of moments. We work in a large displacement framework and we use a discrete homogenization technique. The macroscopic constitutive law is obtained through the resolution of a nonlinear self-equilibrum system of the discrete lattice...

Conical differentiability for bone remodeling contact rod models

Isabel N. Figueiredo, Carlos F. Leal, Cecília S. Pinto (2005)

ESAIM: Control, Optimisation and Calculus of Variations

We prove the conical differentiability of the solution to a bone remodeling contact rod model, for given data (applied loads and rigid obstacle), with respect to small perturbations of the cross section of the rod. The proof is based on the special structure of the model, composed of a variational inequality coupled with an ordinary differential equation with respect to time. This structure enables the verification of the two following fundamental results: the polyhedricity of a modified displacement...

Conical differentiability for bone remodeling contact rod models

Isabel N. Figueiredo, Carlos F. Leal, Cecília S. Pinto (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We prove the conical differentiability of the solution to a bone remodeling contact rod model, for given data (applied loads and rigid obstacle), with respect to small perturbations of the cross section of the rod. The proof is based on the special structure of the model, composed of a variational inequality coupled with an ordinary differential equation with respect to time. This structure enables the verification of the two following fundamental results: the polyhedricity of a modified displacement constraint...

Il problema monolaterale di contatto dinamico con attrito di una trave su una fondazione alla Hetényi: un approccio agli elementi finiti

Luigi Ascione, Giancarlo Bilotti (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

L'ipotesi di contatto monolaterale tra strutture di fondazione e terreno assume un significato importante in tutti quei problemi tecnici, nei quali l'area di contatto tra struttura e fondazione diviene percentualmente piccola, sia per la rigidezza relativa dei corpi a contatto, sia per la condizione di carico, soprattutto in presenza di carichi ribaltanti come possono adesempio essere le forze sismiche. In questo contesto sono stati sviluppati negli ultimi anni diversi studi, che riguadano però...

Currently displaying 1 – 20 of 63

Page 1 Next