Page 1

Displaying 1 – 8 of 8

Showing per page

Control in obstacle-pseudoplate problems with friction on the boundary. approximate optimal design and worst scenario problems

Ivan Hlaváček, Ján Lovíšek (2002)

Applicationes Mathematicae

In addition to the optimal design and worst scenario problems formulated in a previous paper [3], approximate optimization problems are introduced, making use of the finite element method. The solvability of the approximate problems is proved on the basis of a general theorem of [3]. When the mesh size tends to zero, a subsequence of any sequence of approximate solutions converges uniformly to a solution of the continuous problem.

Control of a clamped-free beam by a piezoelectric actuator

Emmanuelle Crépeau, Christophe Prieur (2006)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a controllability problem for a beam, clamped at one boundary and free at the other boundary, with an attached piezoelectric actuator. By Hilbert Uniqueness Method (HUM) and new results on diophantine approximations, we prove that the space of exactly initial controllable data depends on the location of the actuator. We also illustrate these results with numerical simulations.

Control of networks of Euler-Bernoulli beams

Bertrand Dekoninck, Serge Nicaise (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the exact controllability problem by boundary action of hyperbolic systems of networks of Euler-Bernoulli beams. Using the multiplier method and Ingham's inequality, we give sufficient conditions insuring the exact controllability for all time. These conditions are related to the spectral behaviour of the associated operator and are sufficiently concrete in order to be able to check them on particular networks as illustrated on simple examples.

Control of the wave equation by time-dependent coefficient

Antonin Chambolle, Fadil Santosa (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We study an initial boundary-value problem for a wave equation with time-dependent sound speed. In the control problem, we wish to determine a sound-speed function which damps the vibration of the system. We consider the case where the sound speed can take on only two values, and propose a simple control law. We show that if the number of modes in the vibration is finite, and none of the eigenfrequencies are repeated, the proposed control law does lead to energy decay. We illustrate the rich behavior...

Control of the Wave Equation by Time-Dependent Coefficient

Antonin Chambolle, Fadil Santosa (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study an initial boundary-value problem for a wave equation with time-dependent sound speed. In the control problem, we wish to determine a sound-speed function which damps the vibration of the system. We consider the case where the sound speed can take on only two values, and propose a simple control law. We show that if the number of modes in the vibration is finite, and none of the eigenfrequencies are repeated, the proposed control law does lead to energy decay. We illustrate the rich behavior of...

Control structure in optimization problems of bar systems

Leszek Mikulski (2004)

International Journal of Applied Mathematics and Computer Science

Optimal design problems in mechanics can be mathematically formulated as optimal control tasks. The minimum principle is employed in solving such problems. This principle allows us to write down optimal design problems as Multipoint Boundary Value Problems (MPBVPs). The dimension of MPBVPs is an essential restriction that decides on numerical difficulties. Optimal control theory does not give much information about the control structure, i.e., about the sequence of the forms of the right-hand sides...

Currently displaying 1 – 8 of 8

Page 1