Page 1 Next

Displaying 1 – 20 of 315

Showing per page

A convergence result for evolutionary variational inequalities and applications to antiplane frictional contact problems

Mircea Sofonea, Mohamed Ait Mansour (2004)

Applicationes Mathematicae

We consider a class of evolutionary variational inequalities depending on a parameter, the so-called viscosity. We recall existence and uniqueness results, both in the viscous and inviscid case. Then we prove that the solution of the inequality involving viscosity converges to the solution of the corresponding inviscid problem as the viscosity converges to zero. Finally, we apply these abstract results in the study of two antiplane quasistatic frictional contact problems with viscoelastic and elastic...

A discretization method for the problem of a membrane constrained by elastic obstacle

Aldo Maceri (1984)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In questo lavoro sono dati alcuni modelli matematici per il problema di contatto tra una membrana ed un suolo od ostacolo elastico. Viene costruita una approssimazione lineare a tratti della soluzione e, tramite una disequazione variazionale discreta, se ne dà il corrispondente teorema di convergenza.

A Domain Decomposition Algorithm for Contact Problems: Analysis and Implementation

J. Haslinger, R. Kučera, T. Sassi (2009)

Mathematical Modelling of Natural Phenomena

The paper deals with an iterative method for numerical solving frictionless contact problems for two elastic bodies. Each iterative step consists of a Dirichlet problem for the one body, a contact problem for the other one and two Neumann problems to coordinate contact stresses. Convergence is proved by the Banach fixed point theorem in both continuous and discrete case. Numerical experiments indicate scalability of the algorithm for some choices of the relaxation parameter.

A Dynamic Frictionless Contact Problem with Adhesion and Damage

Mohamed Selmani, Lynda Selmani (2007)

Bulletin of the Polish Academy of Sciences. Mathematics

We consider a dynamic frictionless contact problem for a viscoelastic material with damage. The contact is modeled with normal compliance condition. The adhesion of the contact surfaces is considered and is modeled with a surface variable, the bonding field, whose evolution is described by a first order differential equation. We establish a variational formulation for the problem and prove the existence and uniqueness of the solution. The proofs are based on the theory of evolution equations with...

A finite element discretization of the contact between two membranes

Faker Ben Belgacem, Christine Bernardi, Adel Blouza, Martin Vohralík (2009)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

From the fundamental laws of elasticity, we write a model for the contact between two membranes and we perform the analysis of the corresponding system of variational inequalities. We propose a finite element discretization of this problem and prove its well-posedness. We also establish a priori and a posteriori error estimates.

A finite element discretization of the contact between two membranes

Faker Ben Belgacem, Christine Bernardi, Adel Blouza, Martin Vohralík (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

From the fundamental laws of elasticity, we write a model for the contact between two membranes and we perform the analysis of the corresponding system of variational inequalities. We propose a finite element discretization of this problem and prove its well-posedness. We also establish a priori and a posteriori error estimates.

A frictional contact problem with wear and damage for electro-viscoelastic materials

Mohamed Selmani, Lynda Selmani (2010)

Applications of Mathematics

We consider a quasistatic contact problem for an electro-viscoelastic body. The contact is frictional and bilateral with a moving rigid foundation which results in the wear of the contacting surface. The damage of the material caused by elastic deformation is taken into account, its evolution is described by an inclusion of parabolic type. We present a weak formulation for the model and establish existence and uniqueness results. The proofs are based on classical results for elliptic variational...

A frictionless contact algorithm for deformable bodies*

Olivier Pantz (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

This article is devoted to the presentation of a new contact algorithm for bodies undergoing finite deformations. We only address the kinematic aspect of the contact problem, that is the numerical treatment of the non-intersection constraint. In consequence, mechanical aspects like friction, adhesion or wear are not investigated and we restrict our analysis to the simplest frictionless case. On the other hand, our method allows us to treat contacts and self-contacts, thin or non-thin structures...

A frictionless contact algorithm for deformable bodies

Olivier Pantz (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This article is devoted to the presentation of a new contact algorithm for bodies undergoing finite deformations. We only address the kinematic aspect of the contact problem, that is the numerical treatment of the non-intersection constraint. In consequence, mechanical aspects like friction, adhesion or wear are not investigated and we restrict our analysis to the simplest frictionless case. On the other hand, our method allows us to treat contacts and self-contacts, thin or non-thin structures...

A frictionless contact problem for elastic-viscoplastic materials with internal state variable

Lynda Selmani (2013)

Applicationes Mathematicae

We study a mathematical model for frictionless contact between an elastic-viscoplastic body and a foundation. We model the material with a general elastic-viscoplastic constitutive law with internal state variable and the contact with a normal compliance condition. We derive a variational formulation of the model. We establish existence and uniqueness of a weak solution, using general results on first order nonlinear evolution equations with monotone operators and fixed point arguments. Finally,...

Currently displaying 1 – 20 of 315

Page 1 Next