Calculation of some integrals arising in heat transfer in grinding.
In this paper, the convergence of a Neumann-Dirichlet algorithm to approximate Coulomb's contact problem between two elastic bodies is proved in a continuous setting. In this algorithm, the natural interface between the two bodies is retained as a decomposition zone.
An equilibrium problem for a solid with a crack is considered. We assume that both the Coulomb friction law and a nonpenetration condition hold at the crack faces. The problem is formulated as a quasi-variational inequality. Existence of a solution is proved, and a complete system of boundary conditions fulfilled at the crack surface is obtained in suitable spaces.