Page 1

Displaying 1 – 9 of 9

Showing per page

Dislocation dynamics - analytical description of the interaction force between dipolar loops

Vojtěch Minárik, Jan Kratochvíl (2007)

Kybernetika

The interaction between dislocation dipolar loops plays an important role in the computation of the dislocation dynamics. The analytical form of the interaction force between two loops derived in the present paper from Kroupa’s formula of the stress field generated by a single dipolar loop allows for faster computation.

Dynamic contact problems with slip-dependent friction in viscoelasticity

Ioan Ionescu, Quoc-Lan Nguyen (2002)

International Journal of Applied Mathematics and Computer Science

The dynamic evolution with frictional contact of a viscoelastic body is considered. The assumptions on the functions used in modelling the contact are broad enough to include both the normal compliance and the Tresca models. The friction law uses a friction coefficient which is a non-monotone function of the slip. The existence and uniqueness of the solution are proved in the general three-dimensional case.

Dynamic contact problems with velocity conditions

Oanh Chau, Viorica Motreanu (2002)

International Journal of Applied Mathematics and Computer Science

We consider dynamic problems which describe frictional contact between a body and a foundation. The constitutive law is viscoelastic or elastic and the frictional contact is modelled by a general subdifferential condition on the velocity, including the normal damped responses. We derive weak formulations for the models and prove existence and uniqueness results. The proofs are based on the theory of second-order evolution variational inequalities. We show that the solutions of the viscoelastic problems...

Dynamic frictional contact of a viscoelastic beam

Marco Campo, José R. Fernández, Georgios E. Stavroulakis, Juan M. Viaño (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we study the dynamic frictional contact of a viscoelastic beam with a deformable obstacle. The beam is assumed to be situated horizontally and to move, in both horizontal and tangential directions, by the effect of applied forces. The left end of the beam is clamped and the right one is free. Its horizontal displacement is constrained because of the presence of a deformable obstacle, the so-called foundation, which is modelled by a normal compliance contact condition. The effect...

Currently displaying 1 – 9 of 9

Page 1