Lavrentiev phenomenon in microstructure theory.
The paper deals with numerical realization of contact problems with friction obeying the Coulomb law. The original problem is formulated as the fixed-point problem for a certain operator generated by the variational inequality. This inequality is transformed to a system of variational nonlinear equations generating other operators, in a sense "close" to the above one. The fixed-point problem of these operators is solved by the least-square method in which equations and the corresponding quadratic...
We consider mixed and hybrid variational formulations to the linearized elasticity system in domains with cracks. Inequality type conditions are prescribed at the crack faces which results in unilateral contact problems. The variational formulations are extended to the whole domain including the cracks which yields, for each problem, a smooth domain formulation. Mixed finite element methods such as PEERS or BDM methods are designed to avoid locking for nearly incompressible materials in plane elasticity....
We are concerned with a transmission problem for the Kirchhoff plate equation where one small part of the domain is made of a viscoelastic material with the Kelvin-Voigt constitutive relation. We obtain the logarithmic stabilization result (explicit energy decay rate), as well as the wellposedness, for the transmission system. The method is based on a new Carleman estimate to obtain information on the resolvent for high frequency. The main ingredient of the proof is some careful analysis for the...