Page 1

Displaying 1 – 3 of 3

Showing per page

A simple and efficient scheme for phase field crystal simulation

Matt Elsey, Benedikt Wirth (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We propose an unconditionally stable semi-implicit time discretization of the phase field crystal evolution. It is based on splitting the underlying energy into convex and concave parts and then performing H-1 gradient descent steps implicitly for the former and explicitly for the latter. The splitting is effected in such a way that the resulting equations are linear in each time step and allow an extremely simple implementation and efficient solution. We provide the associated stability and error...

Asymptotic behaviour for a phase-field model with hysteresis in one-dimensional thermo-visco-plasticity

Olaf Klein (2004)

Applications of Mathematics

The asymptotic behaviour for t of the solutions to a one-dimensional model for thermo-visco-plastic behaviour is investigated in this paper. The model consists of a coupled system of nonlinear partial differential equations, representing the equation of motion, the balance of the internal energy, and a phase evolution equation, determining the evolution of a phase variable. The phase evolution equation can be used to deal with relaxation processes. Rate-independent hysteresis effects in the strain-stress...

Currently displaying 1 – 3 of 3

Page 1