Page 1

Displaying 1 – 2 of 2

Showing per page

On periodic homogenization in perfect elasto-plasticity

Gilles A. Francfort, Alessandro Giacomini (2014)

Journal of the European Mathematical Society

The limit behavior of a periodic assembly of a finite number of elasto-plastic phases is investigated as the period becomes vanishingly small. A limit quasi-static evolution is derived through two-scale convergence techniques. It can be thermodynamically viewed as an elasto-plastic model, albeit with an infinite number of internal variables.

On two-scale convergence and related sequential compactness topics

Anders Holmbom, Jeanette Silfver, Nils Svanstedt, Niklas Wellander (2006)

Applications of Mathematics

A general concept of two-scale convergence is introduced and two-scale compactness theorems are stated and proved for some classes of sequences of bounded functions in L 2 ( Ω ) involving no periodicity assumptions. Further, the relation to the classical notion of compensated compactness and the recent concepts of two-scale compensated compactness and unfolding is discussed and a defect measure for two-scale convergence is introduced.

Currently displaying 1 – 2 of 2

Page 1