Page 1

Displaying 1 – 2 of 2

Showing per page

Surface energies in a two-dimensional mass-spring model for crystals

Florian Theil (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We study an atomistic pair potential-energy E(n)(y) that describes the elastic behavior of two-dimensional crystals with natoms where y 2 × n characterizes the particle positions. The main focus is the asymptotic analysis of the ground state energy asn tends to infinity. We show in a suitable scaling regime where the energy is essentially quadratic that the energy minimum of E(n) admits an asymptotic expansion involving fractional powers of n: min y E ( n ) ( y ) = n E bulk + n E surface + o ( n ) , n . The bulk energy densityEbulk is given by an explicit expression...

Surface energies in a two-dimensional mass-spring model for crystals

Florian Theil (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We study an atomistic pair potential-energy E(n)(y) that describes the elastic behavior of two-dimensional crystals with n atoms where y 2 × n characterizes the particle positions. The main focus is the asymptotic analysis of the ground state energy as n tends to infinity. We show in a suitable scaling regime where the energy is essentially quadratic that the energy minimum of E(n) admits an asymptotic expansion involving fractional powers of n: min y E ( n ) ( y ) = n E bulk + n E surface + o ( n ) , n . The bulk energy density Ebulk is given by an explicit expression...

Currently displaying 1 – 2 of 2

Page 1