Page 1

Displaying 1 – 3 of 3

Showing per page

Towards a two-scale calculus

Augusto Visintin (2006)

ESAIM: Control, Optimisation and Calculus of Variations

We define and characterize weak and strong two-scale convergence in Lp, C0 and other spaces via a transformation of variable, extending Nguetseng's definition. We derive several properties, including weak and strong two-scale compactness; in particular we prove two-scale versions of theorems of Ascoli-Arzelà, Chacon, Riesz, and Vitali. We then approximate two-scale derivatives, and define two-scale convergence in spaces of either weakly or strongly differentiable functions. We also derive...

Two-scale homogenization for a model in strain gradient plasticity

Alessandro Giacomini, Alessandro Musesti (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Using the tool of two-scale convergence, we provide a rigorous mathematical setting for the homogenization result obtained by Fleck and Willis [J. Mech. Phys. Solids 52 (2004) 1855–1888] concerning the effective plastic behaviour of a strain gradient composite material. Moreover, moving from deformation theory to flow theory, we prove a convergence result for the homogenization of quasistatic evolutions in the presence of isotropic linear hardening.

Two-scale homogenization for a model in strain gradient plasticity

Alessandro Giacomini, Alessandro Musesti (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Using the tool of two-scale convergence, we provide a rigorous mathematical setting for the homogenization result obtained by Fleck and Willis [J. Mech. Phys. Solids52 (2004) 1855–1888] concerning the effective plastic behaviour of a strain gradient composite material. Moreover, moving from deformation theory to flow theory, we prove a convergence result for the homogenization of quasistatic evolutions in the presence of isotropic linear hardening.

Currently displaying 1 – 3 of 3

Page 1