A generalization to nonlinear hardening of the first shakedown theorem for discrete elastic-plastic structural models
In the plastic constitutive laws the yield functions are assumed to be linear in the stresses, but generally non-linear in the internal variables which are non-decreasing measures of the contribution to plastic strains by each face of the yield surface. The structural models referred to for simplicity are aggregates of constant-strain finite elements. Influence of geometry changes on equilibrium are allowed for in a linearized way (the equilibrium equation contains a bilinear term in the displacements...