The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The paper is devoted to the study of solvability of boundary value problems for the stream function, describing non-viscous, irrotional, subsonic flowes through cascades of profiles in a layer of variable thickness. From the definition of a classical solution the variational formulation is derive and the concept of a weak solution is introduced. The proof of the existence and uniqueness of the weak solution is based on the monotone operator theory.
An optimal control problem for a model for stationary, low Mach
number, highly nonisothermal, viscous flows is considered.
The control problem involves the minimization of a measure of
the distance between the velocity field and a given target
velocity field. The existence of solutions of a boundary value
problem for the model equations is established as is the
existence of solutions of the optimal control problem. Then, a
derivation of an optimality system, i.e., a boundary value
problem from...
Currently displaying 1 –
7 of
7