Page 1

Displaying 1 – 10 of 10

Showing per page

On a hybrid finite-volume-particle method

Alina Chertock, Alexander Kurganov (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present a hybrid finite-volume-particle numerical method for computing the transport of a passive pollutant by a flow. The flow is modeled by the one- and two-dimensional Saint-Venant system of shallow water equations and the pollutant propagation is described by a transport equation. This paper is an extension of our previous work [Chertock, Kurganov and Petrova, J. Sci. Comput. (to appear)], where the one-dimensional finite-volume-particle method has been proposed. The core idea behind the...

On a hybrid finite-volume-particle method

Alina Chertock, Alexander Kurganov (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a hybrid finite-volume-particle numerical method for computing the transport of a passive pollutant by a flow. The flow is modeled by the one- and two-dimensional Saint-Venant system of shallow water equations and the pollutant propagation is described by a transport equation. This paper is an extension of our previous work [Chertock, Kurganov and Petrova, J. Sci. Comput. (to appear)], where the one-dimensional finite-volume-particle method has been proposed. The core idea behind the...

On a stabilized colocated Finite Volume scheme for the Stokes problem

Robert Eymard, Raphaèle Herbin, Jean Claude Latché (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

We present and analyse in this paper a novel colocated Finite Volume scheme for the solution of the Stokes problem. It has been developed following two main ideas. On one hand, the discretization of the pressure gradient term is built as the discrete transposed of the velocity divergence term, the latter being evaluated using a natural finite volume approximation; this leads to a non-standard interpolation formula for the expression of the pressure on the edges of the control volumes. On the other...

On discontinuous Galerkin methods for nonlinear convection-diffusion problems and compressible flow

Vít Dolejší, Miloslav Feistauer, Christoph Schwab (2002)

Mathematica Bohemica

The paper is concerned with the discontinuous Galerkin finite element method for the numerical solution of nonlinear conservation laws and nonlinear convection-diffusion problems with emphasis on applications to the simulation of compressible flows. We discuss two versions of this method: (a) Finite volume discontinuous Galerkin method, which is a generalization of the combined finite volume—finite element method. Its advantage is the use of only one mesh (in contrast to the combined finite volume—finite...

On some implicit and semi-implicit staggered schemes for the shallow water and Euler equations

R. Herbin, W. Kheriji, J.-C. Latché (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we propose implicit and semi-implicit in time finite volume schemes for the barotropic Euler equations (hence, as a particular case, for the shallow water equations) and for the full Euler equations, based on staggered discretizations. For structured meshes, we use the MAC finite volume scheme, and, for general mixed quadrangular/hexahedral and simplicial meshes, we use the discrete unknowns of the Rannacher−Turek or Crouzeix−Raviart finite elements. We first show that a solution...

On the Charney Conjecture of Data Assimilation Employing Temperature Measurements Alone: The Paradigm of 3D Planetary Geostrophic Model

Aseel Farhat, Evelyn Lunasin, Edriss S. Titi (2016)

Mathematics of Climate and Weather Forecasting

Analyzing the validity and success of a data assimilation algorithmwhen some state variable observations are not available is an important problem in meteorology and engineering. We present an improved data assimilation algorithm for recovering the exact full reference solution (i.e. the velocity and temperature) of the 3D Planetary Geostrophic model, at an exponential rate in time, by employing coarse spatial mesh observations of the temperature alone. This provides, in the case of this paradigm,...

On the connection between some Riemann-solver free approaches to the approximation of multi-dimensional systems of hyperbolic conservation laws

Tim Kröger, Sebastian Noelle, Susanne Zimmermann (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we present some interesting connections between a number of Riemann-solver free approaches to the numerical solution of multi-dimensional systems of conservation laws. As a main part, we present a new and elementary derivation of Fey’s Method of Transport (MoT) (respectively the second author’s ICE version of the scheme) and the state decompositions which form the basis of it. The only tools that we use are quadrature rules applied to the moment integral used in the gas kinetic derivation...

On the connection between some Riemann-solver free approaches to the approximation of multi-dimensional systems of hyperbolic conservation laws

Tim Kröger, Sebastian Noelle, Susanne Zimmermann (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we present some interesting connections between a number of Riemann-solver free approaches to the numerical solution of multi-dimensional systems of conservation laws. As a main part, we present a new and elementary derivation of Fey's Method of Transport (MoT) (respectively the second author's ICE version of the scheme) and the state decompositions which form the basis of it. The only tools that we use are quadrature rules applied to the moment integral used in the...

Currently displaying 1 – 10 of 10

Page 1