A mathematical model for core-annular fluids with surfactants.
This study concerns some asymptotic models used to compute the flow outside and inside fractures in a bidimensional porous medium. The flow is governed by the Darcy law both in the fractures and in the porous matrix with large discontinuities in the permeability tensor. These fractures are supposed to have a small thickness with respect to the macroscopic length scale, so that we can asymptotically reduce them to immersed polygonal fault interfaces and the model finally consists in a coupling between...
We present here a systematic method of derivation of asymptotic models for internal waves, that is, for the propagation of waves at the interface of two fluids of different densities. Many physical regimes are investigated, depending on the physical parameters (depth of the fluids, amplitude and wavelength of the interface deformations). This systematic method allows us to recover the many models existing in the literature and to derive some new models, in particular in the case of large amplitude...