Solutions globales de l'équation de Boltzmann
Page 1
R-J. Di Perna, P-L. Lions (1987/1988)
Séminaire Équations aux dérivées partielles (Polytechnique)
Patrick Gérard (1987/1988)
Séminaire Bourbaki
Giovanni Naldi, Lorenzo Pareschi, Giuseppe Toscani (2003)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
In this paper we introduce numerical schemes for a one-dimensional kinetic model of the Boltzmann equation with dissipative collisions and variable coefficient of restitution. In particular, we study the numerical passage of the Boltzmann equation with singular kernel to nonlinear friction equations in the so-called quasi elastic limit. To this aim we introduce a Fourier spectral method for the Boltzmann equation [25, 26] and show that the kernel modes that define the spectral method have the correct...
Giovanni Naldi, Lorenzo Pareschi, Giuseppe Toscani (2010)
ESAIM: Mathematical Modelling and Numerical Analysis
In this paper we introduce numerical schemes for a one-dimensional kinetic model of the Boltzmann equation with dissipative collisions and variable coefficient of restitution. In particular, we study the numerical passage of the Boltzmann equation with singular kernel to nonlinear friction equations in the so-called quasi elastic limit. To this aim we introduce a Fourier spectral method for the Boltzmann equation [CITE] and show that the kernel modes that define the spectral method have the correct...
K. Voronjec (1971)
Publications de l'Institut Mathématique [Elektronische Ressource]
Laurent Desvillettes (1997)
Annales de la Faculté des sciences de Toulouse : Mathématiques
Taranov, Volodymyr B. (2008)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Page 1