Page 1

Displaying 1 – 7 of 7

Showing per page

Contaminant transport with adsorption in dual-well flow

Jozef Kačur, Roger Van Keer (2003)

Applications of Mathematics

Numerical approximation schemes are discussed for the solution of contaminant transport with adsorption in dual-well flow. The method is based on time stepping and operator splitting for the transport with adsorption and diffusion. The nonlinear transport is solved by Godunov’s method. The nonlinear diffusion is solved by a finite volume method and by Newton’s type of linearization. The efficiency of the method is discussed.

Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem

Yves Coudière, Jean-Paul Vila, Philippe Villedieu (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, a class of cell centered finite volume schemes, on general unstructured meshes, for a linear convection-diffusion problem, is studied. The convection and the diffusion are respectively approximated by means of an upwind scheme and the so called diamond cell method [4]. Our main result is an error estimate of order h, assuming only the W2,p (for p>2) regularity of the continuous solution, on a mesh of quadrangles. The proof is based on an extension of the ideas developed in...

Convergence rate of a finite volume scheme for the linear convection-diffusion equation on locally refined meshes

Yves Coudière, Philippe Villedieu (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We study a finite volume method, used to approximate the solution of the linear two dimensional convection diffusion equation, with mixed Dirichlet and Neumann boundary conditions, on Cartesian meshes refined by an automatic technique (which leads to meshes with hanging nodes). We propose an analysis through a discrete variational approach, in a discrete H1 finite volume space. We actually prove the convergence of the scheme in a discrete H1 norm, with an error estimate of order O(h) (on meshes...

Currently displaying 1 – 7 of 7

Page 1