Caustic consideration of long planetary wave packet analysis in the continuously stratified ocean.
We consider a rotating fluid in a domain with rough horizontal boundaries. The Rossby number, kinematic viscosity and roughness are supposed of characteristic size . We prove a convergence theorem on solutions of Navier-Stokes Coriolis equations, as goes to zero, in the well prepared case. We show in particular that the limit system is a two-dimensional Euler equation with a nonlinear damping term due to boundary layers. We thus generalize the results obtained on flat boundaries with the classical...