Page 1

Displaying 1 – 12 of 12

Showing per page

Semiclassical Limit of the cubic nonlinear Schrödinger Equation concerning a superfluid passing an obstacle

Fanghua Lin, Ping Zhang (2004/2005)

Séminaire Équations aux dérivées partielles

In this paper, we study the semiclassical limit of the cubic nonlinear Schrödinger equation with the Neumann boundary condition in an exterior domain. We prove that before the formation of singularities in the limit system, the quantum density and the quantum momentum converge to the unique solution of the compressible Euler equation with the slip boundary condition as the scaling parameter approaches 0 .

Simplified models of quantum fluids in nuclear physics

Bernard Ducomet (2001)

Mathematica Bohemica

We revisit a hydrodynamical model, derived by Wong from Time-Dependent-Hartree-Fock approximation, to obtain a simplified version of nuclear matter. We obtain well-posed problems of Navier-Stokes-Poisson-Yukawa type, with some unusual features due to quantum aspects, for which one can prove local existence. In the case of a one-dimensional nuclear slab, we can prove a result of global existence, by using a formal analogy with some model of nonlinear "viscoelastic" rods.

Currently displaying 1 – 12 of 12

Page 1