A 2D finite element procedure for magnetic field analysis taking into account a vector Preisach model.
Towards a constructive method to determine an L∞-conductivity from the corresponding Dirichlet to Neumann operator, we establish a Fredholm integral equation of the second kind at the boundary of a two dimensional body. We show that this equation depends directly on the measured data and has always a unique solution. This way the geometric optics solutions for the L∞-conductivity problem can be determined in a stable manner at the boundary and outside of the body.
In this paper, we study a model for the magnetization in thin ferromagnetic films. It comes as a variational problem for -valued maps (the magnetization) of two variables : . We are interested in the behavior of minimizers as . They are expected to be -valued maps of vanishing distributional divergence , so that appropriate boundary conditions enforce line discontinuities. For finite , these line discontinuities are approximated by smooth transition layers, the so-called Néel walls. Néel...
A continuous finite element method to approximate Friedrichs' systems is proposed and analyzed. Stability is achieved by penalizing the jumps across mesh interfaces of the normal derivative of some components of the discrete solution. The convergence analysis leads to optimal convergence rates in the graph norm and suboptimal of order ½ convergence rates in the L2-norm. A variant of the method specialized to Friedrichs' systems associated with elliptic PDE's in mixed form and reducing the number...
In several practically interesting applications of electromagnetic scattering theory like, e.g., scattering from small point-like objects such as buried artifacts or small inclusions in non-destructive testing, scattering from thin curve-like objects such as wires or tubes, or scattering from thin sheet-like objects such as cracks, the volume of the scatterers is small relative to the volume of the surrounding medium and with respect to the wave length of the applied electromagnetic fields. This...
In several practically interesting applications of electromagnetic scattering theory like, e.g., scattering from small point-like objects such as buried artifacts or small inclusions in non-destructive testing, scattering from thin curve-like objects such as wires or tubes, or scattering from thin sheet-like objects such as cracks, the volume of the scatterers is small relative to the volume of the surrounding medium and with respect to the wave length of the applied electromagnetic fields. This...
In this paper, a new hybrid simulated annealing algorithm for constrained global optimization is proposed. We have developed a stochastic algorithm called ASAPSPSA that uses Adaptive Simulated Annealing algorithm (ASA). ASA is a series of modifications to the basic simulated annealing algorithm (SA) that gives the region containing the global solution of an objective function. In addition, Simultaneous Perturbation Stochastic Approximation (SPSA)...