Page 1 Next

Displaying 1 – 20 of 45

Showing per page

Tangential fields in mathematical model of optical diffraction

Krček, Jiří, Vlček, Jaroslav (2015)

Programs and Algorithms of Numerical Mathematics

We present the formulation of optical diffraction problem on periodic interface based on vector tangential fields, for which the system of boundary integral equations is established. Obtained mathematical model is numerically solved using boundary element method and applied to sine interface profile.

T-coercivity for scalar interface problems between dielectrics and metamaterials

Anne-Sophie Bonnet-Ben Dhia, Lucas Chesnel, Patrick Ciarlet (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Some electromagnetic materials have, in a given frequency range, an effective dielectric permittivity and/or a magnetic permeability which are real-valued negative coefficients when dissipation is neglected. They are usually called metamaterials. We study a scalar transmission problem between a classical dielectric material and a metamaterial, set in an open, bounded subset of Rd, with d = 2,3. Our aim is to characterize occurences where the problem is well-posed within the Fredholm (or coercive...

T-coercivity for scalar interface problems between dielectrics and metamaterials

Anne-Sophie Bonnet-Ben Dhia, Lucas Chesnel, Patrick Ciarlet (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

Some electromagnetic materials have, in a given frequency range, an effective dielectric permittivity and/or a magnetic permeability which are real-valued negative coefficients when dissipation is neglected. They are usually called metamaterials. We study a scalar transmission problem between a classical dielectric material and a metamaterial, set in an open, bounded subset of Rd, with d = 2,3. Our aim is to characterize occurences where the problem is well-posed within the Fredholm (or coercive...

Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell’s equations

Ludovic Moya (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we study the temporal convergence of a locally implicit discontinuous Galerkin method for the time-domain Maxwell’s equations modeling electromagnetic waves propagation. Particularly, we wonder whether the method retains its second-order ordinary differential equation (ODE) convergence under stable simultaneous space-time grid refinement towards the true partial differential equation (PDE) solution. This is not a priori clear due to the component splitting which can introduce order...

Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell’s equations∗

Ludovic Moya (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we study the temporal convergence of a locally implicit discontinuous Galerkin method for the time-domain Maxwell’s equations modeling electromagnetic waves propagation. Particularly, we wonder whether the method retains its second-order ordinary differential equation (ODE) convergence under stable simultaneous space-time grid refinement towards the true partial differential equation (PDE) solution. This is not a priori clear due to the component splitting which can introduce order...

The change in electric potential due to lightning

William W. Hager, Beyza Caliskan Aslan (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

The change in the electric potential due to lightning is evaluated. The potential along the lightning channel is a constant which is the projection of the pre-flash potential along a piecewise harmonic eigenfunction which is constant along the lightning channel. The change in the potential outside the lightning channel is a harmonic function whose boundary conditions are expressed in terms of the pre-flash potential and the post-flash potential along the lightning channel. The expression for the...

The discrete compactness property for anisotropic edge elements on polyhedral domains

Ariel Luis Lombardi (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We prove the discrete compactness property of the edge elements of any order on a class of anisotropically refined meshes on polyhedral domains. The meshes, made up of tetrahedra, have been introduced in [Th. Apel and S. Nicaise, Math. Meth. Appl. Sci. 21 (1998) 519–549]. They are appropriately graded near singular corners and edges of the polyhedron.

The discrete compactness property for anisotropic edge elements on polyhedral domains∗

Ariel Luis Lombardi (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We prove the discrete compactness property of the edge elements of any order on a class of anisotropically refined meshes on polyhedral domains. The meshes, made up of tetrahedra, have been introduced in [Th. Apel and S. Nicaise, Math. Meth. Appl. Sci. 21 (1998) 519–549]. They are appropriately graded near singular corners and edges of the polyhedron.

The dynamics of a levitated cylindrical permanent magnet above a superconductor.

Michael Schreiner (2003)

Revista Matemática Complutense

When a permanent magnet is released above a superconductor, it is levitated. This is due to the Meissner-effect, i.e. the repulsion of external magnetic fields within the superconductor. In experiments, an interesting behavior of the levitated magnet can be observed: it might start to oscillate with increasing amplitude and some magnets even reach a continuous rotation. In this paper we develop a mathematical model for this effect and identify by analytical methods as well with finite element simulations...

Currently displaying 1 – 20 of 45

Page 1 Next