Familes FI and FII of Symmetric and Periodic Orbits of Charged Particle Moving in the Plane of Motion of two Parallel Revolving Magnetic Dipoles
This paper presents how the FEMLab package can be used to perform the magnetic field analysis in the Active Magnetic Bearing (AMB). The AMB is an integral part of the industrial rotational machine laboratory model. The electromagnetic field distribution and density analysis allow verifying the designed AMB and the influence of the shaft and coil current changes on the bearing parameters.
The authors examine a finite element method for the numerical approximation of the solution to a div-rot system with mixed boundary conditions in bounded plane domains with piecewise smooth boundary. The solvability of the system both in an infinite and finite dimensional formulation is proved. Piecewise linear element fields with pointwise boundary conditions are used and their approximation properties are studied. Numerical examples indicating the accuracy of the method are given.
We consider a system of two linear conservative wave equations, with a nonlinear coupling, in space dimension three. Spherical pulse like initial data cause focusing at the origin in the limit of short wavelength. Because the equations are conservative, the caustic crossing is not trivial, and we analyze it for particular initial data. It turns out that the phase shift between the incoming wave (before the focus) and the outgoing wave (past the focus) behaves like , where stands for the wavelength....
We study spherical pulse like families of solutions to semilinear wave equattions in space time of dimension 1+3 as the pulses focus at a point and emerge outgoing. We emphasize the scales for which the incoming and outgoing waves behave linearly but the nonlinearity has a strong effect at the focus. The focus crossing is described by a scattering operator for the semilinear equation, which broadens the pulses. The relative errors in our approximate solutions are small in the L∞ norm.
The paper is devoted to the electromagnetic inverse scattering problem for a dielectric anisotropic and magnetically isotropic media. The properties of an anisotropic medium with respect to electromagnetic waves are defined by the tensors, which give the relation between the inductions and the fields. The tensor Fourier diffraction theorem derived in the paper can be considered a useful tool for studying tensor fields in inverse problems of electromagnetic scattering. The method is based on the...
The purpose of this paper is to derive and study a new asymptotic model for the equilibrium state of a thin anisotropic piezoelectric plate in frictional contact with a rigid obstacle. In the asymptotic process, the thickness of the piezoelectric plate is driven to zero and the convergence of the unknowns is studied. This leads to two-dimensional Kirchhoff-Love plate equations, in which mechanical displacement and electric potential are partly decoupled. Based on this model numerical examples are presented...