Page 1

Displaying 1 – 1 of 1

Showing per page

Peak functions on convex domains

Kolář, Martin (2000)

Proceedings of the 19th Winter School "Geometry and Physics"

Let Ω n be a domain with smooth boundary and p Ω . A holomorphic function f on Ω is called a C k ( k = 0 , 1 , 2 , ) peak function at p if f C k ( Ω ¯ ) , f ( p ) = 1 , and | f ( q ) | < 1 for all q Ω ¯ { p } . If Ω is strongly pseudoconvex, then C peak functions exist. On the other hand, J. E. Fornaess constructed an example in 2 to show that this result fails, even for C 1 functions, on a weakly pseudoconvex domain [Math. Ann. 227, 173-175 (1977; Zbl 0346.32026)]. Subsequently, E. Bedford and J. E. Fornaess showed that there is always a continuous peak function on a...

Currently displaying 1 – 1 of 1

Page 1