Sabinin‘s method for classification of local Bol loops
The author presents a simple method (by using the standard theory of connections on principle bundles) of -decomposition of the physical equations written in terms of differential forms on a 4-dimensional spacetime of general relativity, with respect to a general observer. Finally, the author suggests possible applications of such a decomposition to the Maxwell theory.
The paper represents the lectures given by the author at the 16th Winter School on Geometry and Physics, Srni, Czech Republic, January 13-20, 1996. He develops in an elegant manner the theory of conformal covariants and the theory of functional determinant which is canonically associated to an elliptic operator on a compact pseudo-Riemannian manifold. The presentation is excellently realized with a lot of details, examples and open problems.
This paper deals with Dirac, twistor and Killing equations on Weyl manifolds with -spin structures. A conformal Schrödinger-Lichnerowicz formula is presented and used to derive integrability conditions for these equations. It is shown that the only non-closed Weyl manifolds of dimension greater than 3 that admit solutions of the real Killing equation are 4-dimensional and non-compact. Any Weyl manifold of dimension greater than 3, that admits a real Killing spinor has to be Einstein-Weyl.
Let be an open subset of the complex plane, and let denote a finite-dimensional complex simple Lie algebra. A. A. Belavin and V. G. Drinfel’d investigated non-degenerate meromorphic functions from into which are solutions of the classical Yang-Baxter equation [Funct. Anal. Appl. 16, 159-180 (1983; Zbl 0504.22016)]. They found that (up to equivalence) the solutions depend only on the difference of the two variables and that their set of poles forms a discrete (additive) subgroup of the...
Summary: For a large class of classical field models used for realistic quantum field theoretic models, an infinite-dimensional supermanifold of classical solutions in Minkowski space can be constructed. This solution supermanifold carries a natural symplectic structure; the resulting Poisson brackets between the field strengths are the classical prototypes of the canonical (anti-) commutation relations. Moreover, we discuss symmetries and the Noether theorem in this context.