Page 1

Displaying 1 – 19 of 19

Showing per page

A measure-theoretic characterization of Boolean algebras among orthomodular lattices

Pavel Pták, Sylvia Pulmannová (1994)

Commentationes Mathematicae Universitatis Carolinae

We investigate subadditive measures on orthomodular lattices. We show as the main result that an orthomodular lattice has to be distributive (=Boolean) if it possesses a unital set of subadditive probability measures. This result may find an application in the foundation of quantum theories, mathematical logic, or elsewhere.

A spectral theorem for σ MV-algebras

Sylvia Pulmannová (2005)

Kybernetika

MV-algebras were introduced by Chang, 1958 as algebraic bases for multi-valued logic. MV stands for “multi-valued" and MV algebras have already occupied an important place in the realm of nonstandard (mathematical) logic applied in several fields including cybernetics. In the present paper, using the Loomis–Sikorski theorem for σ -MV-algebras, we prove that, with every element a in a σ -MV algebra M , a spectral measure (i. e. an observable) Λ a : ( [ 0 , 1 ] ) ( M ) can be associated, where ( M ) denotes the Boolean σ -algebra...

An atomic MV-effect algebra with non-atomic center

Vladimír Olejček (2007)

Kybernetika

Does there exist an atomic lattice effect algebra with non-atomic subalgebra of sharp elements? An affirmative answer to this question (and slightly more) is given: An example of an atomic MV-effect algebra with a non-atomic Boolean subalgebra of sharp or central elements is presented.

Archimedean atomic lattice effect algebras in which all sharp elements are central

Zdena Riečanová (2006)

Kybernetika

We prove that every Archimedean atomic lattice effect algebra the center of which coincides with the set of all sharp elements is isomorphic to a subdirect product of horizontal sums of finite chains, and conversely. We show that every such effect algebra can be densely embedded into a complete effect algebra (its MacNeille completion) and that there exists an order continuous state on it.

Atomicity of lattice effect algebras and their sub-lattice effect algebras

Jan Paseka, Zdena Riečanová (2009)

Kybernetika

We show some families of lattice effect algebras (a common generalization of orthomodular lattices and MV-effect algebras) each element E of which has atomic center C(E) or the subset S(E) of all sharp elements, resp. the center of compatibility B(E) or every block M of E. The atomicity of E or its sub-lattice effect algebras C(E), S(E), B(E) and blocks M of E is very useful equipment for the investigations of its algebraic and topological properties, the existence or smearing of states on E, questions...

Currently displaying 1 – 19 of 19

Page 1