Page 1

Displaying 1 – 6 of 6

Showing per page

Weak c*-Hopf algebras: the coassociative symmetry of non-integral dimensions

Gabriella Böhm, Kornél Szlachányi (1997)

Banach Center Publications

By allowing the coproduct to be non-unital and weakening the counit and antipode axioms of a C*-Hopf algebra too, we obtain a selfdual set of axioms describing a coassociative quantum group, that we call a weak C*-Hopf algebra, which is sufficiently general to describe the symmetries of essentially arbitrary fusion rules. It is the same structure that can be obtained by replacing the multiplicative unitary of Baaj and Skandalis with a partial isometry. The algebraic properties, the existence of...

Wehrl entropy of the state in a two-atom Tavis-Cummings model

Debraj Nath, P. K. Das (2011)

Banach Center Publications

In this paper we present an entropic description of quantum state obtained by interaction of one mode of quantized electromagnetic field with two two-level atoms inside a cavity, known as Tavis-Cumming model. Wehrl entropy has been calculated analytically and investigated as a function of the average value of the photon number operator. Husimi's Q function has been calculated and compared with the behaviour of the field entropy.

When is a quantum space not a group?

Piotr Mikołaj Sołtan (2010)

Banach Center Publications

We give a survey of techniques from quantum group theory which can be used to show that some quantum spaces (objects of the category dual to the category of C*-algebras) do not admit any quantum group structure. We also provide a number of examples which include some very well known quantum spaces. Our tools include several purely quantum group theoretical results as well as study of existence of characters and traces on C*-algebras describing the considered quantum spaces as well as properties...

Currently displaying 1 – 6 of 6

Page 1