-analog of Gelfand-Graev basis for the noncompact quantum algebra .
The notion of strong circularity for an unbounded operator is introduced and studied. Moreover, q-deformed circularity as a q-analogue of circularity is characterized in terms of the partially isometric and the positive parts of the polar decomposition.
We propose a definition of a quantised -differential algebra and show that the quantised exterior algebra (defined by Berenstein and Zwicknagl) and the quantised Clifford algebra (defined by the authors) of are natural examples of such algebras.
We consider Poisson pencils, each generated by a linear Poisson-Lie bracket and a quadratic Poisson bracket corresponding to a so-called Reflection Equation Algebra. We show that any bracket from such a Poisson pencil (and consequently, the whole pencil) can be restricted to any generic leaf of the Poisson-Lie bracket. We realize a quantization of these Poisson pencils (restricted or not) in the framework of braided affine geometry. Also, we introduce super-analogs of all these Poisson pencils and...
An approach to construction of a quantum group gauge theory based on the quantum group generalisation of fibre bundles is reviewed.
We define the concept of quantum section of a line bundle of a homogeneous superspace and we employ it to define the concept of quantum homogeneous projective superspace. We also suggest a generalization of the QDP to the quantum supersetting.