The analytic continuation of the Lippmann-Schwinger eigenfunctions, and antiunitary symmetries.
Toeplitz quantization is defined in a general setting in which the symbols are the elements of a possibly non-commutative algebra with a conjugation and a possibly degenerate inner product. We show that the quantum group is such an algebra. Unlike many quantization schemes, this Toeplitz quantization does not require a measure. The theory is based on the mathematical structures defined and studied in several recent papers of the author; those papers dealt with some specific examples of this new...