Previous Page 2

Displaying 21 – 25 of 25

Showing per page

On fully practical finite element approximations of degenerate Cahn-Hilliard systems

John W. Barrett, James F. Blowey, Harald Garcke (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a model for phase separation of a multi-component alloy with non-smooth free energy and a degenerate mobility matrix. In addition to showing well-posedness and stability bounds for our approximation, we prove convergence in one space dimension. Furthermore an iterative scheme for solving the resulting nonlinear discrete system is analysed. We discuss also how our approximation has to be modified in order to be applicable to a logarithmic free energy. Finally numerical experiments...

Segmentation of MRI data by means of nonlinear diffusion

Radomír Chabiniok, Radek Máca, Michal Beneš, Jaroslav Tintěra (2013)

Kybernetika

The article focuses on the application of the segmentation algorithm based on the numerical solution of the Allen-Cahn non-linear diffusion partial differential equation. This equation is related to the motion of curves by mean curvature. It exhibits several suitable mathematical properties including stable solution profile. This allows the user to follow accurately the position of the segmentation curve by bringing it quickly to the vicinity of the segmented object and by approaching the details...

Solving the Cahn-Hilliard variational inequality with a semi-smooth Newton method

Luise Blank, Martin Butz, Harald Garcke (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The Cahn-Hilliard variational inequality is a non-standard parabolic variational inequality of fourth order for which straightforward numerical approaches cannot be applied. We propose a primal-dual active set method which can be interpreted as a semi-smooth Newton method as solution technique for the discretized Cahn-Hilliard variational inequality. A (semi-)implicit Euler discretization is used in time and a piecewise linear finite element discretization of splitting type is used in space leading...

Solving the Cahn-Hilliard variational inequality with a semi-smooth Newton method

Luise Blank, Martin Butz, Harald Garcke (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The Cahn-Hilliard variational inequality is a non-standard parabolic variational inequality of fourth order for which straightforward numerical approaches cannot be applied. We propose a primal-dual active set method which can be interpreted as a semi-smooth Newton method as solution technique for the discretized Cahn-Hilliard variational inequality. A (semi-)implicit Euler discretization is used in time and a piecewise linear finite element discretization of splitting type is used in space...

The entropy principle: from continuum mechanics to hyperbolic systems of balance laws

Tommaso Ruggeri (2005)

Bollettino dell'Unione Matematica Italiana

We discuss the different roles of the entropy principle in modern thermodynamics. We start with the approach of rational thermodynamics in which the entropy principle becomes a selection rule for physical constitutive equations. Then we discuss the entropy principle for selecting admissible discontinuous weak solutions and to symmetrize general systems of hyperbolic balance laws. A particular attention is given on the local and global well-posedness of the relative Cauchy problem for smooth solutions....

Currently displaying 21 – 25 of 25

Previous Page 2