Loading [MathJax]/extensions/MathMenu.js
In this paper we analyze the stochastic version of a minimalistic multi-strain model,
which captures essential differences between primary and secondary infections in dengue
fever epidemiology, and investigate the interplay between stochasticity, seasonality and
import. The introduction of stochasticity is needed to explain the fluctuations observed
in some of the available data sets, revealing a scenario where noise and complex
deterministic skeleton...
This paper is concerned with the analysis and implementation of spectral Galerkin methods for a class of Fokker-Planck equations that arises from the kinetic theory of dilute polymers. A relevant feature of the class of equations under consideration from the viewpoint of mathematical analysis and numerical approximation is the presence of an unbounded drift coefficient, involving a smooth convex potential that is equal to along the boundary of the computational domain . Using a symmetrization...
This paper is concerned with the analysis and implementation of spectral Galerkin
methods for a class of Fokker-Planck equations that arises
from the kinetic theory of dilute polymers. A relevant feature of the class of equations
under consideration from the viewpoint of mathematical analysis and numerical approximation is
the presence of an unbounded drift coefficient, involving a smooth convex potential U that is equal to +∞ along
the boundary ∂D of the computational domain D.
Using a symmetrization...
We introduce and investigate a set-valued analogue of classical Langevin equation on a Riemannian manifold that may arise as a description of some physical processes (e.g., the motion of the physical Brownian particle) on non-linear configuration space under discontinuous forces or forces with control. Several existence theorems are proved.
We present a probabilistic model of the microscopic scenario of dielectric relaxation. We prove a limit theorem for random sums of a special type that appear in the model. By means of the theorem, we show that the presented approach to relaxation phenomena leads to the well known Havriliak-Negami empirical dielectric response provided the physical quantities in the relaxation scheme have heavy-tailed distributions. The mathematical model, presented here in the context of dielectric relaxation, can...
Currently displaying 1 –
7 of
7