Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation.
A new set of nonlocal boundary conditions is proposed for the higher modes of the 3D inviscid primitive equations. Numerical schemes using the splitting-up method are proposed for these modes. Numerical simulations of the full nonlinear primitive equations are performed on a nested set of domains, and the results are discussed.
A new set of nonlocal boundary conditions is proposed for the higher modes of the 3D inviscid primitive equations. Numerical schemes using the splitting-up method are proposed for these modes. Numerical simulations of the full nonlinear primitive equations are performed on a nested set of domains, and the results are discussed.
Mathematical modeling provides a particularly important tool for studying the stream runoff formation processes, and its role is enhanced in the case of a sparse, obsolete monitoring network characteristic of most regions of Siberia. When analyzing spatio-temporal regularities of the water and sediment runoff in river systems, serious problems are caused by lack of the basic hydrological model capable of handling real-time data of hydrological measurements. Calculations of unsteady flows in stream...
Presentamos un modelo numérico unidimensional para flujos bicapa que se ha desarrollado para la simulación de flujos a través de canales con geometría irregular tanto en anchura como en profundidad. Este modelo se utiliza para el estudio y simulación de las mareas internas que tienen lugar en el Estrecho de Gibraltar. En primer lugar presentaremos las ecuaciones del modelo y el esquema numérico que se usa para su resolución. A continuación evaluaremos el buen hacer del modelo numérico comparando...
The paper studies mesh dependent numerical solution of groundwater problems with singularities, caused by boreholes represented as points, instead of a real radius. We show on examples, that the numerical solution of the borehole pumping problem with point source (singularity) can be related to the exact solution of a regular problem with adapted geometry of a finite borehole radius. The radius providing the fit is roughly proportional to the mesh step. Next we define a problem of fracture-rock...
We consider the full Navier-Stokes-Fourier system of equations on an unbounded domain with prescribed nonvanishing boundary conditions for the density and temperature at infinity. The topic of this article continues author’s previous works on existence of the Navier-Stokes-Fourier system on nonsmooth domains. The procedure deeply relies on the techniques developed by Feireisl and others in the series of works on compressible, viscous and heat conducting fluids.
We analyze the compressible isentropic Navier–Stokes equations (Lions, 1998) in the two-dimensional case with . These equations also modelize the shallow water problem in height-flow rate formulation used to solve the flow in lakes and perfectly well-mixed sea. We establish a convergence result for the time-discretized problem when the momentum equation and the continuity equation are solved with the Galerkin method, without adding a penalization term in the continuity equation as it is made in...
We analyze the compressible isentropic Navier–Stokes equations (Lions, 1998) in the two-dimensional case with . These equations also modelize the shallow water problem in height-flow rate formulation used to solve the flow in lakes and perfectly well-mixed sea. We establish a convergence result for the time-discretized problem when the momentum equation and the continuity equation are solved with the Galerkin method, without adding a penalization term in the continuity equation as it is made in Lions...