Characterizing Optimality in Nonconvex Optimizationi
This paper presents an application of Multiple Attribute Utility Theory on strategic choices concerning energy transportation. The environmental assessment of a network reinforcement strategy is emphasized. Our assessment brings about to consider multidimensional variables in MCDM. However, Multi-Attributed Utility Theory (MAUT) cannot, as a practical matter, manage such variables. We therefore work out a methodology to transform multidimensional variables into unidimensional ones. We apply...
En el presente trabajo, después de justificar lo importante que resulta para el decisor, en muchos casos, el poder obtener clasificaciones en el conjunto de objetivos de un problema de Porgramación Multiobjetivo, se hace un estudio algorítmico que permite agruparlos en función de ciertos niveles de conformidad.
Given a graph G = (V,E) and a “cost function” (provided by an oracle), the problem [PCliqW] consists in finding a partition into cliques of V(G) of minimum cost. Here, the cost of a partition is the sum of the costs of the cliques in the partition. We provide a polynomial time dynamic program for the case where G is an interval graph and f belongs to a subclass of submodular set functions, which we call “value-polymatroidal”. This provides a common solution for various generalizations of the...
Let G = (V,E) be a simple undirected graph. A forest F ⊆ E of G is said to be clique-connecting if each tree of F spans a clique of G. This paper adresses the clique-connecting forest polytope. First we give a formulation and a polynomial time separation algorithm. Then we show that the nontrivial nondegenerate facets of the stable set polytope are facets of the clique-connecting polytope. Finally we introduce a family of rank inequalities which are facets, and which generalize the clique inequalities. ...
In this note we provide regularity conditions of closedness type which guarantee some surjectivity results concerning the sum of two maximal monotone operators by using representative functions. The first regularity condition we give guarantees the surjectivity of the monotone operator S(· + p) + T(·), where p ɛ X and S and T are maximal monotone operators on the reflexive Banach space X. Then, this is used to obtain sufficient conditions for the surjectivity of S + T and for the situation when...
The features of an evolutionary algorithm that most determine its performance are the coding by which its chromosomes represent candidate solutions to its target problem and the operators that act on that coding. Also, when a problem involves constraints, a coding that represents only valid solutions and operators that preserve that validity represent a smaller search space and result in a more effective search. Two genetic algorithms for the leaf-constrained minimum spanning tree problem illustrate...
This paper studies the issue of well-posedness for vector optimization. It is shown that coercivity implies well-posedness without any convexity assumptions on problem data. For convex vector optimization problems, solution sets of such problems are non-convex in general, but they are highly structured. By exploring such structures carefully via convex analysis, we are able to obtain a number of positive results, including a criterion for well-posedness in terms of that of associated scalar problems....
This paper studies the issue of well-posedness for vector optimization. It is shown that coercivity implies well-posedness without any convexity assumptions on problem data. For convex vector optimization problems, solution sets of such problems are non-convex in general, but they are highly structured. By exploring such structures carefully via convex analysis, we are able to obtain a number of positive results, including a criterion for well-posedness in terms of that of associated scalar...