Displaying 81 – 100 of 243

Showing per page

Elementary Introduction to Stochastic Finance in Discrete Time

Peter Jaeger (2012)

Formalized Mathematics

This article gives an elementary introduction to stochastic finance (in discrete time). A formalization of random variables is given and some elements of Borel sets are considered. Furthermore, special functions (for buying a present portfolio and the value of a portfolio in the future) and some statements about the relation between these functions are introduced. For details see: [8] (p. 185), [7] (pp. 12, 20), [6] (pp. 3-6).

Entry-exit decisions with implementation delay under uncertainty

Yong-Chao Zhang (2018)

Applications of Mathematics

We employ a natural method from the perspective of the optimal stopping theory to analyze entry-exit decisions with implementation delay of a project, and provide closed expressions for optimal entry decision times, optimal exit decision times, and the maximal expected present value of the project. The results in conventional research were obtained under the restriction that the sum of the entry cost and exit cost is nonnegative. In practice, we may meet cases when this sum is negative, so it is...

Estimation of a Regression Function on a Point Process and its Application to Financial Ruin Risk Forecast

Dia, Galaye, Kone, Abdoulaye (2009)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: Primary 60G55; secondary 60G25.We estimate a regression function on a point process by the Tukey regressogram method in a general setting and we give an application in the case of a Risk Process. We show among other things that, in classical Poisson model with parameter r, if W is the amount of the claim with finite espectation E(W) = m, Sn (resp. Rn) the accumulated interval waiting time for successive claims (resp. the aggregate claims amount) up to the...

Events of Borel Sets, Construction of Borel Sets and Random Variables for Stochastic Finance

Peter Jaeger (2014)

Formalized Mathematics

We consider special events of Borel sets with the aim to prove, that the set of the irrational numbers is an event of the Borel sets. The set of the natural numbers, the set of the integer numbers and the set of the rational numbers are countable, so we can use the literature [10] (pp. 78-81) as a basis for the similar construction of the proof. Next we prove, that different sets can construct the Borel sets [16] (pp. 9-10). Literature [16] (pp. 9-10) and [11] (pp. 11-12) gives an overview, that...

Exponential utility optimization, indifference pricing and hedging for a payment process

Łukasz Delong (2012)

Applicationes Mathematicae

We deal with pricing and hedging for a payment process. We investigate a Black-Scholes financial market with stochastic coefficients and a stream of liabilities with claims occurring at random times, continuously over the duration of the contract and at the terminal time. The random times of the claims are generated by a random measure with a stochastic intensity of jumps. The claims are written on the asset traded in the financial market and on the non-tradeable source of risk driven by the random...

Fractional virus epidemic model on financial networks

Mehmet Ali Balci (2016)

Open Mathematics

In this study, we present an epidemic model that characterizes the behavior of a financial network of globally operating stock markets. Since the long time series have a global memory effect, we represent our model by using the fractional calculus. This model operates on a network, where vertices are the stock markets and edges are constructed by the correlation distances. Thereafter, we find an analytical solution to commensurate system and use the well-known differential transform method to obtain...

Gain-loss pricing under ambiguity of measure

Mustafa Ç. Pınar (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Motivated by the observation that the gain-loss criterion, while offering economically meaningful prices of contingent claims, is sensitive to the reference measure governing the underlying stock price process (a situation referred to as ambiguity of measure), we propose a gain-loss pricing model robust to shifts in the reference measure. Using a dual representation property of polyhedral risk measures we obtain a one-step, gain-loss criterion based theorem of asset pricing under ambiguity of...

General Laws of Adaptation to Environmental Factors: from Ecological Stress to Financial Crisis

A. N. Gorban, E. V. Smirnova, T. A. Tyukina (2009)

Mathematical Modelling of Natural Phenomena

We study ensembles of similar systems under load of environmental factors. The phenomenon of adaptation has similar properties for systems of different nature. Typically, when the load increases above some threshold, then the adapting systems become more different (variance increases), but the correlation increases too. If the stress continues to increase then the second threshold appears: the correlation achieves maximal value, and start to decrease, but the variance continue to increase. In many...

Generalized CreditRisk+ model and applications

Jakub Szotek (2015)

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

In the paper we give a mathematical overview of the CreditRisk+ model as a tool used for calculating credit risk in a portfolio of debts and suggest some other applications of the same method of analysis.

Hedging of the European option in discrete time under transaction costs depending on time

Marek Andrzej Kociński (2010)

Applicationes Mathematicae

Hedging of the European option in a discrete time financial market with proportional transaction costs is considered. It is shown that for a certain class of options the set of portfolios which allow the seller to pay the claim of the buyer in quite a general discrete time market model is the same as the set of such portfolios under the assumption that the stock price movement is given by a suitable CRR model.

Currently displaying 81 – 100 of 243