Effect of randomly fluctuating environment on autotroph-herbivore model system.
Basic models suitable to explain the epidemiology of dengue fever have previously shown the possibility of deterministically chaotic attractors, which might explain the observed fluctuations found in empiric outbreak data. However, the region of bifurcations and chaos require strong enhanced infectivity on secondary infection, motivated by experimental findings of antibody-dependent-enhancement. Including temporary cross-immunity in such models, which is common knowledge among field researchers...
We give some results on the existence, uniqueness and regularity of a nonlinear evolution system. This system models the viscoelastic behaviour of unicellular marine alga Acetabularia mediterrania when the calcium concentration varies. We show (with the aid of a fixed-point theorem) that the system admits a unique local solution in time.