Page 1

Displaying 1 – 2 of 2

Showing per page

Feeding Threshold for Predators Stabilizes Predator-Prey Systems

D. Bontje, B. W. Kooi, G. A.K. van Voorn, S.A.L.M Kooijman (2009)

Mathematical Modelling of Natural Phenomena

Since Rosenzweig showed the destabilisation of exploited ecosystems, the so called Paradox of enrichment, several mechanisms have been proposed to resolve this paradox. In this paper we will show that a feeding threshold in the functional response for predators feeding on a prey population stabilizes the system and that there exists a minimum threshold value above which the predator-prey system is unconditionally stable with respect to enrichment. Two models are analysed, the first being the classical...

From Quasispecies Theory to Viral Quasispecies: How Complexity has Permeated Virology

E. Domingo, C. Perales (2012)

Mathematical Modelling of Natural Phenomena

RNA viruses replicate as complex and dynamic mutant distributions. They are termed viral quasispecies, in recognition of the fundamental contribution of quasispecies theory in our understanding of error-prone replicative entities. Viral quasispecies have launched a fertile field of transdiciplinary research, both experimental and theoretical. Here we review the origin and some implications of the quasispecies concept, with emphasis on internal interactions...

Currently displaying 1 – 2 of 2

Page 1