Page 1

Displaying 1 – 2 of 2

Showing per page

Modelling Evolution of Regulatory Networks in Artificial Bacteria

Y. Sanchez-Dehesa, D. Parsons, J. M. Peña, G. Beslon (2008)

Mathematical Modelling of Natural Phenomena

Studying the evolutive and adaptative machanisms of prokayotes is a complicated task. As these machanisms cannot be easily studied "in vivo", it is necessary to consider other methods. We have therefore developed the RAevol model, a model designed to study the evolution of bacteria and their adaptationto the environment. Our model simulates the evolution of a population of artificial bacteria in a changing environment, providing us with an insight into the strategies that digital organisms develop...

Modelling of Cancer Growth, Evolution and Invasion: Bridging Scales and Models

A. R.A. Anderson, K. A. Rejniak, P. Gerlee, V. Quaranta (2010)

Mathematical Modelling of Natural Phenomena

Since cancer is a complex phenomenon that incorporates events occurring on different length and time scales, therefore multiscale models are needed if we hope to adequately address cancer specific questions. In this paper we present three different multiscale individual-cell-based models, each motivated by cancer-related problems emerging from each of the spatial scales: extracellular, cellular or subcellular, but also incorporating relevant information from other levels. We apply these hybrid...

Currently displaying 1 – 2 of 2

Page 1