The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper, two robust consensus problems are considered for a multi-agent system with various disturbances. To achieve the robust consensus, two distributed control schemes for each agent, described by a second-order differential equation, are proposed. With the help of graph theory, the robust consensus stability of the multi-agent system with communication delays is obtained for both fixed and switching interconnection topologies. The results show the leaderless consensus can be achieved with...
In this paper we present an input-output point of view for the problem of closed loop norm minimization of stable plants when a decentralized structure and a disturbance decoupling property are imposed on the controller. We show that this problem is convex and present approaches to its solution in the optimal sense in the nontrivial case which is when the block off- diagonal terms of the plant have more columns than rows.
Many applications of wireless sensor networks (WSN) require information about the geographical location of each sensor node. Self-organization and localization capabilities are one of the most important requirements in sensor networks. This paper provides an overview of centralized distance-based algorithms for estimating the positions of nodes in a sensor network. We discuss and compare three approaches: semidefinite programming, simulated annealing and two-phase stochastic optimization-a hybrid...
In this paper, we consider an output consensus problem for a general class of nonlinear multi-agent systems without a prior knowledge of the agents' control directions. Two distributed Nussbaum-type control laws are proposed to solve the leaderless and leader-following adaptive consensus for heterogeneous multiple agents. Examples and simulations are given to verify their effectiveness.
Currently displaying 1 –
5 of
5