Page 1

Displaying 1 – 7 of 7

Showing per page

Behavioral systems theory: A survey

Eva Zerz (2008)

International Journal of Applied Mathematics and Computer Science

We survey the so-called behavioral approach to systems and control theory, which was founded by J. C. Willems and his school. The central idea of behavioral systems theory is to put the focus on the set of trajectories of a dynamical system rather than on a specific set of equations modelling the underlying phenomenon. Moreover, all signal components are treated on an equal footing at first, and their partition into inputs and outputs is derived from the system law, in a way that admits several...

Block-based physical modeling with applications in musical acoustics

Rudolf Rabenstein, Stefan Petrausch (2008)

International Journal of Applied Mathematics and Computer Science

Block-based physical modeling is a methodology for modeling physical systems with different subsystems. Each subsystem may be modeled according to a different paradigm. Connecting systems of diverse nature in the discrete-time domain requires a unified interconnection strategy. Such a strategy is provided by the well-known wave digital principle, which had been introduced initially for the design of digital filters. It serves as a starting point for the more general idea of blockbased physical modeling,...

Boolean Biology: Introducing Boolean Networks and Finite Dynamical Systems Models to Biology and Mathematics Courses

R. Robeva, B. Kirkwood, R. Davies (2011)

Mathematical Modelling of Natural Phenomena

Since the release of the Bio 2010 report in 2003, significant emphasis has been placed on initiating changes in the way undergraduate biology and mathematics courses are taught and on creating new educational materials to facilitate those changes. Quantitative approaches, including mathematical models, are now considered critical for the education of the next generation of biologists. In response, mathematics departments across the country have initiated changes to their introductory calculus sequence,...

Bottom-up learning of hierarchical models in a class of deterministic POMDP environments

Hideaki Itoh, Hisao Fukumoto, Hiroshi Wakuya, Tatsuya Furukawa (2015)

International Journal of Applied Mathematics and Computer Science

The theory of partially observable Markov decision processes (POMDPs) is a useful tool for developing various intelligent agents, and learning hierarchical POMDP models is one of the key approaches for building such agents when the environments of the agents are unknown and large. To learn hierarchical models, bottom-up learning methods in which learning takes place in a layer-by-layer manner from the lowest to the highest layer are already extensively used in some research fields such as hidden...

Building Mathematical Models and Biological Insight in an Introductory Biology Course

A. E. Weisstein (2011)

Mathematical Modelling of Natural Phenomena

A growing body of literature testifies to the importance of quantitative reasoning skills in the 21st-century biology curriculum, and to the learning benefits associated with active pedagogies. The process of modeling a biological system provides an approach that integrates mathematical skills and higher-order thinking with existing course content knowledge. We describe a general strategy for teaching model-building in an introductory biology course,...

Currently displaying 1 – 7 of 7

Page 1