### A unified approach to multivariable discrete-time filtering based on the Wiener theory

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

Two universally applicable smoothing operations adjustable to meet the specific properties of the given smoothing problem are widely used: 1. Smoothing splines and 2. Smoothing digital convolution filters. The first operation is related to the data vector $r={({r}_{0},...,{r}_{n-1})}^{T}$ with respect to the operations $\mathcal{A}$, $\mathcal{L}$ and to the smoothing parameter $\alpha $. The resulting function is denoted by ${\sigma}_{\alpha}\left(t\right)$. The measured sample $r$ is defined on an equally spaced mesh $\Delta ={\{{t}_{i}=ih\}}_{i=0}^{n-1}$$...$

A bicubic model for local smoothing of surfaces is constructed on the base of pivot points. Such an approach allows reducing the dimension of matrix of normal equations more than twice. The model enables to increase essentially the speed and stability of calculations. The algorithms, constructed by the aid of the offered model, can be used both in applications and the development of global methods for smoothing and approximation of surfaces.

The paper deals with the recently proposed autotracking piecewise cubic approximation (APCA) based on the discrete projective transformation, and neural networks (NN). The suggested new approach facilitates the analysis of data with complex dependence and relatively small errors. We introduce a new representation of polynomials that can provide different local approximation models. We demonstrate how APCA can be applied to especially noisy data thanks to NN and local estimations. On the other hand,...

Popular exponential smoothing methods dealt originally only with equally spaced observations. When time series contains gaps, smoothing constants have to be adjusted. Cipra et al., following Wright’s approach of irregularly spaced observations, have suggested ad hoc modification of smoothing constants for the Holt-Winters smoothing method. In this article the fact that the underlying model of the Holt-Winters method is a certain seasonal ARIMA is used. Minimum mean square error smoothing constants...

Using integration by parts on Gaussian space we construct a Stein Unbiased Risk Estimator (SURE) for the drift of Gaussian processes, based on their local and occupation times. By almost-sure minimization of the SURE risk of shrinkage estimators we derive an estimation and de-noising procedure for an input signal perturbed by a continuous-time Gaussian noise.