MacWilliams identities and matroid polynomials.
After recalling the axiomatic concept of fuzziness measure, we define some fuzziness measures through Sugeno's and Choquet's integral. In particular, for the so-called homogeneous fuzziness measures we prove two representation theorems by means of the above integrals.
We answer to a question of De Luca and Restivo whether there exists a circular code which is maximal as circular code and not as code.
We answer to a question of De Luca and Restivo whether there exists a circular code which is maximal as circular code and not as code.
Stochastic interdependence of a probability distribution on a product space is measured by its Kullback–Leibler distance from the exponential family of product distributions (called multi-information). Here we investigate low-dimensional exponential families that contain the maximizers of stochastic interdependence in their closure. Based on a detailed description of the structure of probability distributions with globally maximal multi-information we obtain our main result: The exponential family...
The problem to maximize the information divergence from an exponential family is generalized to the setting of Bregman divergences and suitably defined Bregman families.
G. Edelman, O. Sporns and G. Tononi have introduced the neural complexity of a family of random variables, defining it as a specific average of mutual information over subfamilies. We show that their choice of weights satisfies two natural properties, namely invariance under permutations and additivity, and we call any functional satisfying these two properties an intricacy. We classify all intricacies in terms of probability laws on the unit interval and study the growth rate of maximal intricacies...
We discuss the effects that the usual set theoretic and arithmetic operations with fuzzy sets and fuzzy numbers have with respect to the energies and entropies of the fuzzy sets connected and of the resulting fuzzy sets, and we also compare the entropies and energies of the results of several of those operations.
We use the concept of t-norms and conorms to develop a pseudo metric and we then use this pseudo metric to define a class of measures of fuzziness associated with a fuzzy set. We investigate the properties of this class of measures of fuzziness.
This paper deals with a characterization of the totally compositive measures of uncertainty which satisfy the branching property. A procedure to construct all continuous measures in this class is given.