The structure of generalized quasi cyclic codes.
We study the functional codes defined on a projective algebraic variety , in the case where is a non-degenerate Hermitian surface. We first give some bounds for , which are better than the ones known. We compute the number of codewords reaching the second weight. We also estimate the third weight, show the geometrical structure of the codewords reaching this third weight and compute their number. The paper ends with a conjecture on the fourth weight and the fifth weight of the code .
Duplication is the replacement of a factor w within a word by ww. This operation can be used iteratively to generate languages starting from words or sets of words. By undoing duplications, one can eventually reach a square-free word, the original word's duplication root. The duplication root is unique, if the length of duplications is fixed. Based on these unique roots we define the concept of duplication code. Elementary properties are stated, then the conditions under which infinite duplication...
Binary quadratic residue codes of length produce via construction and density doubling type II lattices like the Leech. Recently, quaternary quadratic residue codes have been shown to produce the same lattices by construction modulo . We prove in a direct way the equivalence of these two constructions for . In dimension 32, we obtain an extremal lattice of type II not isometric to the Barnes-Wall lattice . The equivalence between construction modulo plus density doubling and construction...
In this paper we present a developed software in the area of Coding Theory. Using it, codes with given properties can be classified. A part of this software can be used also for investigations (isomorphisms, automorphism groups) of other discrete structures-combinatorial designs, Hadamard matrices, bipartite graphs etc.