Page 1

Displaying 1 – 11 of 11

Showing per page

Efficient calculation of the Reed-Muller form by means of the Walsh transform

Piotr Porwik (2002)

International Journal of Applied Mathematics and Computer Science

The paper describes a spectral method for combinational logic synthesis using the Walsh transform and the Reed-Muller form. A new algorithm is presented that allows us to obtain the mixed polarity Reed-Muller expansion of Boolean functions. The most popular minimisation (sub-minimisation) criterion of the Reed-Muller form is obtained by the exhaustive search of all the polarity vectors. This paper presents a non-exhaustive method for Reed-Muller expansions. The new method allows us to build the...

EKF-based dual synchronization of chaotic colpitts circuit and Chua’s circuit

Shaohua Hong, Zhiguo Shi, Kangsheng Chen (2008)

Kybernetika

In this paper, dual synchronization of a hybrid system containing a chaotic Colpitts circuit and a Chua’s circuit, connected by an additive white Gaussian noise (AWGN) channel, is studied via numeric simulations. The extended Kalman filter (EKF) is employed as the response system to achieve the dual synchronization. Two methods are proposed and investigated. The first method treats the combination of a Colpitts circuit and a Chua’s circuit as a higher- dimensional system, while the second method...

Embeddings of hamiltonian paths in faulty k-ary 2-cubes

Shiying Wang, Shurong Zhang (2012)

Discussiones Mathematicae Graph Theory

It is well known that the k-ary n-cube has been one of the most efficient interconnection networks for distributed-memory parallel systems. A k-ary n-cube is bipartite if and only if k is even. Let (X,Y) be a bipartition of a k-ary 2-cube (even integer k ≥ 4). In this paper, we prove that for any two healthy vertices u ∈ X, v ∈ Y, there exists a hamiltonian path from u to v in the faulty k-ary 2-cube with one faulty vertex in each part.

Essential Arity Gap of Boolean Functions

Shtrakov, Slavcho (2008)

Serdica Journal of Computing

In this paper we investigate the Boolean functions with maximum essential arity gap. Additionally we propose a simpler proof of an important theorem proved by M. Couceiro and E. Lehtonen in [3]. They use Zhegalkin’s polynomials as normal forms for Boolean functions and describe the functions with essential arity gap equals 2. We use to instead Full Conjunctive Normal Forms of these polynomials which allows us to simplify the proofs and to obtain several combinatorial results concerning the Boolean functions...

Currently displaying 1 – 11 of 11

Page 1