Structures pseudo-algébriques (1ère partie)
In this note we characterize the one-generated subdirectly irreducible MV-algebras and use this characterization to prove that a quasivariety of MV-algebras has the relative congruence extension property if and only if it is a variety.
Assuming the continuum hypothesis, we construct a pure subgroup G of the Baer-Specker group with the following properties. Every endomorphism of G differs from a scalar multiplication by an endomorphism of finite rank. Yet G has uncountably many homomorphisms to ℤ.
In this article, we formalize a free Z-module and its property. In particular, we formalize the vector space of rational field corresponding to a free Z-module and prove formally that submodules of a free Z-module are free. Z-module is necassary for lattice problems - LLL (Lenstra, Lenstra and Lov´asz) base reduction algorithm and cryptographic systems with lattice [20]. Some theorems in this article are described by translating theorems in [11] into theorems of Z-module, however their proofs are...
For a t-norm T on a bounded lattice , a partial order was recently defined and studied. In [11], it was pointed out that the binary relation is a partial order on , but may not be a lattice in general. In this paper, several sufficient conditions under which is a lattice are given, as an answer to an open problem posed by the authors of [11]. Furthermore, some examples of t-norms on such that is a lattice are presented.
We formulate, within the frame-theory for the foundations of Mathematics outlined in [2], a list of axioms which state that almost all "interesting" collections and almost all "interesting" operations are elements of the universe. The resulting theory would thus have the important foundational feature of being completely self-contained. Unfortunately, the whole list is inconsistent, and we are led to formulate the following problem, which we call the problem of self-reference: "Find out...