Displaying 501 – 520 of 729

Showing per page

On the complexity of subspaces of S ω

Carlos Uzcátegui (2003)

Fundamenta Mathematicae

Let (X,τ) be a countable topological space. We say that τ is an analytic (resp. Borel) topology if τ as a subset of the Cantor set 2 X (via characteristic functions) is an analytic (resp. Borel) set. For example, the topology of the Arkhangel’skiĭ-Franklin space S ω is F σ δ . In this paper we study the complexity, in the sense of the Borel hierarchy, of subspaces of S ω . We show that S ω has subspaces with topologies of arbitrarily high Borel rank and it also has subspaces with a non-Borel topology. Moreover,...

On the complexity of sums of Dirichlet measures

Sylvain Kahane (1993)

Annales de l'institut Fourier

Let M be the set of all Dirichlet measures on the unit circle. We prove that M + M is a non Borel analytic set for the weak* topology and that M + M is not norm-closed. More precisely, we prove that there is no weak* Borel set which separates M + M from D (or even L 0 ) , the set of all measures singular with respect to every measure in M . This extends results of Kaufman, Kechris and Lyons about D and H and gives many examples of non Borel analytic sets.

On the concreteness of quantum logics

Pavel Pták, John David Maitland Wright (1985)

Aplikace matematiky

It is shown that for any quantum logic L one can find a concrete logic K and a surjective homomorphism f from K onto L such that f maps the centre of K onto the centre of L . Moreover, one can ensure that each finite set of compatible elements in L is the image of a compatible subset of K . This result is “best possible” - let a logic L be the homomorphic image of a concrete logic under a homomorphism such that, if F is a finite subset of the pre-image of a compatible subset of L , then F is compatible....

On the construction of dense lattices with a given automorphisms group

Philippe Gaborit, Gilles Zémor (2007)

Annales de l’institut Fourier

We consider the problem of constructing dense lattices in n with a given non trivial automorphisms group. We exhibit a family of such lattices of density at least c n 2 - n , which matches, up to a multiplicative constant, the best known density of a lattice packing. For an infinite sequence of dimensions n , we exhibit a finite set of lattices that come with an automorphisms group of size n , and a constant proportion of which achieves the aforementioned lower bound on the largest packing density. The algorithmic...

On the construction of t-norms (t-conorms) by using interior (closure) operator on bounded lattices

Emel Aşıcı (2022)

Kybernetika

Recently, the topic of construction methods for triangular norms (triangular conorms), uninorms, nullnorms, etc. has been studied widely. In this paper, we propose construction methods for triangular norms (t-norms) and triangular conorms (t-conorms) on bounded lattices by using interior and closure operators, respectively. Thus, we obtain some proposed methods given by Ertuğrul, Karaçal, Mesiar [15] and Çaylı [8] as results. Also, we give some illustrative examples. Finally, we conclude that the...

On the constructions of t-norms and t-conorms on some special classes of bounded lattices

Emel Aşıcı (2021)

Kybernetika

Recently, the topic related to the construction of triangular norms and triangular conorms on bounded lattices using ordinal sums has been extensively studied. In this paper, we introduce a new ordinal sum construction of triangular norms and triangular conorms on an appropriate bounded lattice. Also, we give some illustrative examples for clarity. Then, we show that a new construction method can be generalized by induction to a modified ordinal sum for triangular norms and triangular conorms on...

On the continuity set of an Omega rational function

Olivier Carton, Olivier Finkel, Pierre Simonnet (2008)

RAIRO - Theoretical Informatics and Applications

In this paper, we study the continuity of rational functions realized by Büchi finite state transducers. It has been shown by Prieur that it can be decided whether such a function is continuous. We prove here that surprisingly, it cannot be decided whether such a function f has at least one point of continuity and that its continuity set C(f) cannot be computed. In the case of a synchronous rational function, we show that its continuity set is rational and that it can be computed. Furthermore...

On the Converse of Caristi's Fixed Point Theorem

Szymon Głąb (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

Let X be a nonempty set of cardinality at most 2 and T be a selfmap of X. Our main theorem says that if each periodic point of T is a fixed point under T, and T has a fixed point, then there exist a metric d on X and a lower semicontinuous map ϕ :X→ ℝ ₊ such that d(x,Tx) ≤ ϕ(x) - ϕ(Tx) for all x∈ X, and (X,d) is separable. Assuming CH (the Continuum Hypothesis), we deduce that (X,d) is compact.

Currently displaying 501 – 520 of 729