Dark age (but not obscure) logic -- a brief excursion.
Dans une belle paire de modèles d’une théorie stable ayant élimination des imaginaires sans la propriété de recouvrement fini, tout groupe définissable se projette, à isogénie près, sur les points -rationnels d’un groupe définissable dans le réduit à paramètres dans . Le noyau de cette projection est un groupe définissable dans le réduit.Un groupe interprétable dans une paire de corps algébriquement clos où est une extension propre de est, à isogénie près, l’extension des points -rationnels...
The elementary theory of ⟨α;×⟩, where α is an ordinal and × denotes ordinal multiplication, is decidable if and only if . Moreover if and respectively denote the right- and left-hand divisibility relation, we show that Th and Th are decidable for every ordinal ξ. Further related definability results are also presented.
We explore the borderline between decidability and undecidability of the following question: “Let C be a class of codes. Given a machine of type X, is it decidable whether the language lies in C or not?” for codes in general, ω-codes, codes of finite and bounded deciphering delay, prefix, suffix and bi(pre)fix codes, and for finite automata equipped with different versions of push-down stores and counters.
In this paper we prove the decidability of the HD0L ultimate periodicity problem.
Various static analyses of functional programming languages that permit infinite data structures make use of set constants like Top, Inf, and Bot, denoting all terms, all lists not eventually ending in Nil, and all non-terminating programs, respectively. We use a set language that permits union, constructors and recursive definition of set constants with a greatest fixpoint semantics in the set of all, also infinite, computable trees, where all term constructors are non-strict. This...
We consider logics on and which are weaker than Presburger arithmetic and we settle the following decision problem: given a k-ary relation on and which are first order definable in Presburger arithmetic, are they definable in these weaker logics? These logics, intuitively, are obtained by considering modulo and threshold counting predicates for differences of two variables.