The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 23

Showing per page

The distributivity numbers of finite products of P(ω)/fin

Saharon Shelah, Otmar Spinas (1998)

Fundamenta Mathematicae

Generalizing [ShSp], for every n < ω we construct a ZFC-model where ℌ(n), the distributivity number of r.o. ( P ( ω ) / f i n ) n , is greater than ℌ(n+1). This answers an old problem of Balcar, Pelant and Simon (see [BaPeSi]). We also show that both Laver and Miller forcings collapse the continuum to ℌ(n) for every n < ω, hence by the first result, consistently they collapse it below ℌ(n).

The even-odd hat problem

Daniel J. Velleman (2012)

Fundamenta Mathematicae

We answer a question of C. Hardin and A. Taylor concerning a hat-guessing game.

Currently displaying 1 – 20 of 23

Page 1 Next