The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 81 –
100 of
196
We study maximal almost disjoint (MAD) families of functions in that satisfy certain strong combinatorial properties. In particular, we study the notions of strongly and very MAD families of functions. We introduce and study a hierarchy of combinatorial properties lying between strong MADness and very MADness. Proving a conjecture of Brendle, we show that if , then there no very MAD families. We answer a question of Kastermans by constructing a strongly MAD family from = . Next, we study the...
We consider a combinatorial problem related to guessing the values of a function at various points based on its values at certain other points, often presented by way of a hat-problem metaphor: there are a number of players who will have colored hats placed on their heads, and they wish to guess the colors of their own hats. A visibility relation specifies who can see which hats. This paper focuses on the existence of minimal predictors: strategies guaranteeing at least one player guesses correctly,...
A point x is a (bow) tie-point of a space X if X∖x can be partitioned into (relatively) clopen sets each with x in its closure. We denote this as where A, B are the closed sets which have a unique common accumulation point x. Tie-points have appeared in the construction of non-trivial autohomeomorphisms of βℕ = ℕ* (by Veličković and Shelah Steprans) and in the recent study (by Levy and Dow Techanie) of precisely 2-to-1 maps on ℕ*. In these cases the tie-points have been the unique fixed point...
We study a higher-dimensional version of the standard notion of a gap formed by a finite sequence of ideals of the quotient algebra 𝓟(ω)/fin. We examine different types of such objects found in 𝓟(ω)/fin both from the combinatorial and the descriptive set-theoretic side.
We shall show that Open Coloring Axiom has different influence on the algebra than on . The tool used to accomplish this is forcing with a Suslin tree.
Assuming Martin’s Axiom, we provide an example of two Fréchet-Urysohn -spaces, whose product is a non-Fréchet-Urysohn -space. This gives a consistent negative answer to a question raised by T. Nogura.
There is a set U of reals such that for every analytic set A there is a continuous function f which maps U bijectively to A.
We prove that, under CH, for each Boolean algebra A of cardinality at most the continuum there is an embedding of A into P(ω)/fin such that each automorphism of A can be extended to an automorphism of P(ω)/fin. We also describe a model of ZFC + MA(σ-linked) in which the continuum is arbitrarily large and the above assertion holds true.
We prove that for an unbounded metric space , the minimal character of a point of the Higson corona of is equal to if has asymptotically isolated balls and to otherwise. This implies that under a metric space of bounded geometry is coarsely equivalent to the Cantor macro-cube if and only if and . This contrasts with a result of Protasov saying that under CH the coronas of any two asymptotically zero-dimensional unbounded metric separable spaces are homeomorphic.
Currently displaying 81 –
100 of
196