Displaying 181 – 200 of 847

Showing per page

The Distance Roman Domination Numbers of Graphs

Hamideh Aram, Sepideh Norouzian, Seyed Mahmoud Sheikholeslami (2013)

Discussiones Mathematicae Graph Theory

Let k be a positive integer, and let G be a simple graph with vertex set V (G). A k-distance Roman dominating function on G is a labeling f : V (G) → {0, 1, 2} such that for every vertex with label 0, there is a vertex with label 2 at distance at most k from each other. The weight of a k-distance Roman dominating function f is the value w(f) =∑v∈V f(v). The k-distance Roman domination number of a graph G, denoted by γkR (D), equals the minimum weight of a k-distance Roman dominating function on...

The distribution of the number of nodes in the relative interior of the typical I-segment in homogeneous planar anisotropic STIT Tessellations

Christoph Thäle (2010)

Commentationes Mathematicae Universitatis Carolinae

A result about the distribution of the number of nodes in the relative interior of the typical I-segment in homogeneous and isotropic random tessellations stable under iteration (STIT tessellations) is extended to the anisotropic case using recent findings from Schreiber/Thäle, Typical geometry, second-order properties and central limit theory for iteration stable tessellations, arXiv:1001.0990 [math.PR] (2010). Moreover a new expression for the values of this probability distribution is presented...

The Domination Number of K 3 n

John Georges, Jianwei Lin, David Mauro (2014)

Discussiones Mathematicae Graph Theory

Let K3n denote the Cartesian product Kn□Kn□Kn, where Kn is the complete graph on n vertices. We show that the domination number of K3n is [...]

The Dynamics of the Forest Graph Operator

Suresh Dara, S.M. Hegde, Venkateshwarlu Deva, S.B. Rao, Thomas Zaslavsky (2016)

Discussiones Mathematicae Graph Theory

In 1966, Cummins introduced the “tree graph”: the tree graph T(G) of a graph G (possibly infinite) has all its spanning trees as vertices, and distinct such trees correspond to adjacent vertices if they differ in just one edge, i.e., two spanning trees T1 and T2 are adjacent if T2 = T1 − e + f for some edges e ∈ T1 and f ∉ T1. The tree graph of a connected graph need not be connected. To obviate this difficulty we define the “forest graph”: let G be a labeled graph of order α, finite or infinite,...

The eavesdropping number of a graph

Jeffrey L. Stuart (2009)

Czechoslovak Mathematical Journal

Let G be a connected, undirected graph without loops and without multiple edges. For a pair of distinct vertices u and v , a minimum { u , v } -separating set is a smallest set of edges in G whose removal disconnects u and v . The edge connectivity of G , denoted λ ( G ) , is defined to be the minimum cardinality of a minimum { u , v } -separating set as u and v range over all pairs of distinct vertices in G . We introduce and investigate the eavesdropping number, denoted ε ( G ) , which is defined to be the maximum cardinality of...

The Eccentric Connectivity Polynomial of some Graph Operations

Ashrafi, A., Ghorbani, M., Hossein-Zadeh, M. (2011)

Serdica Journal of Computing

The eccentric connectivity index of a graph G, ξ^C, was proposed by Sharma, Goswami and Madan. It is defined as ξ^C(G) = ∑ u ∈ V(G) degG(u)εG(u), where degG(u) denotes the degree of the vertex x in G and εG(u) = Max{d(u, x) | x ∈ V (G)}. The eccentric connectivity polynomial is a polynomial version of this topological index. In this paper, exact formulas for the eccentric connectivity polynomial of Cartesian product, symmetric difference, disjunction and join of graphs are presented.* The work...

The edge C₄ graph of some graph classes

Manju K. Menon, A. Vijayakumar (2010)

Discussiones Mathematicae Graph Theory

The edge C₄ graph of a graph G, E₄(G) is a graph whose vertices are the edges of G and two vertices in E₄(G) are adjacent if the corresponding edges in G are either incident or are opposite edges of some C₄. In this paper, we show that there exist infinitely many pairs of non isomorphic graphs whose edge C₄ graphs are isomorphic. We study the relationship between the diameter, radius and domination number of G and those of E₄(G). It is shown that for any graph G without isolated vertices, there...

The edge domination problem

Shiow-Fen Hwang, Gerard J. Chang (1995)

Discussiones Mathematicae Graph Theory

An edge dominating set of a graph is a set D of edges such that every edge not in D is adjacent to at least one edge in D. In this paper we present a linear time algorithm for finding a minimum edge dominating set of a block graph.

The edge geodetic number and Cartesian product of graphs

A.P. Santhakumaran, S.V. Ullas Chandran (2010)

Discussiones Mathematicae Graph Theory

For a nontrivial connected graph G = (V(G),E(G)), a set S⊆ V(G) is called an edge geodetic set of G if every edge of G is contained in a geodesic joining some pair of vertices in S. The edge geodetic number g₁(G) of G is the minimum order of its edge geodetic sets. Bounds for the edge geodetic number of Cartesian product graphs are proved and improved upper bounds are determined for a special class of graphs. Exact values of the edge geodetic number of Cartesian product are obtained for several...

Currently displaying 181 – 200 of 847