The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 221 – 240 of 299

Showing per page

Graphs with 3-Rainbow Index n − 1 and n − 2

Xueliang Li, Ingo Schiermeyer, Kang Yang, Yan Zhao (2015)

Discussiones Mathematicae Graph Theory

Let G = (V (G),E(G)) be a nontrivial connected graph of order n with an edge-coloring c : E(G) → {1, 2, . . . , q}, q ∈ N, where adjacent edges may be colored the same. A tree T in G is a rainbow tree if no two edges of T receive the same color. For a vertex set S ⊆ V (G), a tree connecting S in G is called an S-tree. The minimum number of colors that are needed in an edge-coloring of G such that there is a rainbow S-tree for each k-subset S of V (G) is called the k-rainbow index of G, denoted by...

Graphs with 4-Rainbow Index 3 and n − 1

Xueliang Li, Ingo Schiermeyer, Kang Yang, Yan Zhao (2015)

Discussiones Mathematicae Graph Theory

Let G be a nontrivial connected graph with an edge-coloring c : E(G) → {1, 2, . . . , q}, q ∈ ℕ, where adjacent edges may be colored the same. A tree T in G is called a rainbow tree if no two edges of T receive the same color. For a vertex set S ⊆ V (G), a tree that connects S in G is called an S-tree. The minimum number of colors that are needed in an edge-coloring of G such that there is a rainbow S-tree for every set S of k vertices of V (G) is called the k-rainbow index of G, denoted by rxk(G)....

Graphs with convex domination number close to their order

Joanna Cyman, Magdalena Lemańska, Joanna Raczek (2006)

Discussiones Mathematicae Graph Theory

For a connected graph G = (V,E), a set D ⊆ V(G) is a dominating set of G if every vertex in V(G)-D has at least one neighbour in D. The distance d G ( u , v ) between two vertices u and v is the length of a shortest (u-v) path in G. An (u-v) path of length d G ( u , v ) is called an (u-v)-geodesic. A set X ⊆ V(G) is convex in G if vertices from all (a-b)-geodesics belong to X for any two vertices a,b ∈ X. A set X is a convex dominating set if it is convex and dominating. The convex domination number γ c o n ( G ) of a graph G is the...

Graphs with disjoint dominating and paired-dominating sets

Justin Southey, Michael Henning (2010)

Open Mathematics

A dominating set of a graph is a set of vertices such that every vertex not in the set is adjacent to a vertex in the set, while a paired-dominating set of a graph is a dominating set such that the subgraph induced by the dominating set contains a perfect matching. In this paper, we show that no minimum degree is sufficient to guarantee the existence of a disjoint dominating set and a paired-dominating set. However, we prove that the vertex set of every cubic graph can be partitioned into a dominating...

Graphs with equal domination and 2-distance domination numbers

Joanna Raczek (2011)

Discussiones Mathematicae Graph Theory

Let G = (V,E) be a graph. The distance between two vertices u and v in a connected graph G is the length of the shortest (u-v) path in G. A set D ⊆ V(G) is a dominating set if every vertex of G is at distance at most 1 from an element of D. The domination number of G is the minimum cardinality of a dominating set of G. A set D ⊆ V(G) is a 2-distance dominating set if every vertex of G is at distance at most 2 from an element of D. The 2-distance domination number of G is the minimum cardinality...

Currently displaying 221 – 240 of 299